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1.0   SUMMARY 
 
 The ultimate goal of this project was to construct mobile devices capable of 
navigation, surveillance, and report. Control of these devices rests with simulated 
neuronal networks based on knowledge of higher brain functions that comprise 
cognitive control systems. In pursuing this goal, we made specific attempts to apply 
already demonstrated software strategies to develop a versatile set of spiking models, 
apply them to a recognition task, and to demonstrate a working memory. In the course 
of this work a new analytical method for spiking data was devised. We also designed 
and built a new type of mobile device capable of both flight and ground navigation while 
carrying a payload of surveillance sensors or other devices setting the stage for more 
autonomous systems. 
 
2.0   INTRODUCTION 
 
 We have previously demonstrated neuronal network models with the ability to 
navigate, recognize objects, and learn from experience. However, in order to obtain the 
fast responses necessary for control in real-world applications and to take advantage of 
important timing relationships within the networks, spiking models (where the activity of 
a neural unit is defined by a transient voltage “spike,” rather than by the average activity 
rate used in many previous models) are necessary. 
 
 Thus, this project involved significant effort related to the development and 
testing of large-scale networks of spiking neuronal models. Obtaining optimal 
configurations for stability and scalability required the refining of physiological and 
anatomical parameters of networks with varying configurations and with different 
numbers of neural units.  We found that achieving good results with this approach was 
more challenging than with the rate models. We met this challenge by using spiking 
applications of a winner-take-all (WTA) network design. Of the several variations in 
connectivity rules tested, we found that only a center annular surround type exhibited 
appropriate WTA behavior, with stable firing of a relatively small group of units in 
response to different inputs. This architecture was therefore used in the succeeding 
work. 
 
 We begin by presenting an analysis of various network geometries that give rise 
to WTA behavior and describe a type of anatomy and dynamics that can be used in 
various contexts to build functional networks. Learning to reach to a target is one 
example of an application of this approach.  We then describe simulations of 
interconnected networks of spiking neurons that learn to generate patterns of activity in 
correct temporal order. Animal behavior often involves a temporally ordered sequence 
of actions learned from experience which can be demonstrated in a Brain-Based Device 
(BBD).  This work was then extended to a demonstration of a “cognitive” task by using a 
test for mental imagery related to mental rotation.  The integrated output of networks 
with specific functional properties is necessary for producing appropriate behavior in 
time and space. Such behavior requires the formation of a short-term or working 
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memory. Additionally, time was also spent on exploring a new method to analyze 
temporal patterns in time series data, such as spike trains. 
 
 Finally, effort was expended to develop the concept of the QuadHopter™, a new 
type of mobile device capable of both flight and ground operations.  This concept of a 
mobile platform is applicable to missions where a single mode of transport, either flying 
or driving, is not sufficient. 
 
 
3.0   METHODS, ASSUMPTIONS, AND PROCEDURES 
 
 

3.1   Construction and Testing of Versatile Winner-Take-All Networks 

 This aspect of the effort focused on the simulations of large-scale networks of 
excitatory and inhibitory neurons that incorporate realistic spiking kinetics, connectivity, 
and synaptic plasticity. These networks can generate dynamically stable WTA behavior. 
In contrast to studies of networks composed of mean-firing-rate neurons in which 
center-surround connectivity is sufficient for WTA dynamics, we found that a singular 
type of microcircuit connectivity, center-annular-surround (CAS), gave rise to WTA 
behavior in large-scale spiking networks. We show that these networks can form 
smooth maps in response to patterned sensory input. In addition, we show that a 
humanoid Brain-Based-Device (BBD) under the control of a spiking WTA neural network 
can learn to reach to target positions in its visual field, thus demonstrating the 
acquisition of sensorimotor coordination.  A full report on this work and relevant 
scholarly references can be found in Appendix A1.  
 

3.2   Temporal Sequence Learning Demonstrated in a Brain-Based Device 

 Animal behavior often involves a temporally ordered sequence of actions learned 
from experience. Here we describe simulations of interconnected networks of spiking 
neurons that learn to generate patterns of activity in correct temporal order. The 
simulation consists of large-scale networks of thousands of excitatory and inhibitory 
neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic 
plasticity (STDP). The neural architecture within each area is arranged to evoke WTA 
patterns of neural activity that persist for tens of milliseconds. In order to generate and 
switch between consecutive firing patterns in correct temporal order, a reentrant 
exchange of signals between these areas was necessary. To demonstrate the capacity 
of this arrangement, we used the simulation to train a BBD that responded to visual 
input by autonomously generating temporal sequences of motor actions. 
 
 Our previous models of WTA spiking networks were coupled together and trained 
to generate segmented and sequential neural activity. The neural system is composed 
of thousands of simulated biologically realistic excitatory and inhibitory spiking neurons. 
The single compartment neurons modeled in these simulations display voltage 
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dynamics similar to those seen in cortical neurons. Activity of the simulated neurons 
reflects the conductance of well-known ion channels. Synapses were subject both to 
short-term synaptic plasticity and to STDP, which modeled the long-term synaptic 
changes that allowed the system to learn temporal sequences. We found that networks 
composed of spiking neurons of this sort, when trained to respond to repeated 
sequences of sensory cues, generate temporally ordered patterns of neuronal activity 
consisting of brief steady states separated by sharp transitions that resemble those 
observed in functioning brains. We found that the model could be used to control 
specific motor sequences in a BBD. In this research we used the hominid BBD that we 
denote as APE-X. The population activity pattern in this modeled neuronal system has 
similarities to those observed in primate prefrontal cortex during multi-segmented limb 
movements. A full report on this work and related scholarly references can be found in 
Appendix A2.  
 

3.3   Mental Imagery in a Brain-Based Device 

 We have chosen to model how mental functions involved in behavior can arise 
from brain mechanisms. Specifically, we have chosen to model a system capable of 
carrying out a mental rotation task. In this well-known behavioral experiment, a subject 
is shown a picture of an object in a certain orientation together with a picture of the 
same or a different object rotated into a position different from that of the first. The task 
is to declare whether or not the first object is the same as the second. It has been 
inferred that human subjects actually mentally rotate the image of one of the objects to 
make the comparison, since the observed time to make a decision correlates well with 
the degree of the object’s rotation between the two images (Figure 1, [1]).  Emulating 
this behavior requires the integration of multiple levels of neural models, including 
spiking networks, various mappings, and interactions with the environment. We believe 
that success in this approach can be applied to a variety of problems in cognitive 
neuroscience. 
 
3.3.1  Previous Research  
 
 Previous research in mental imagery lead to initial results similar to those in 
human tests. Our results were preliminary in several ways:  1) they were generated 
entirely in a simulation and did not use the APE-X BBD, 2) the dopamine-dependent 
STDP “value” system was not included, and 3) the motor responses to “match” and 
“non-match” pairs of images were not learned. This latter point is important in order to 
rule out classical conditioning, rather than mental imagery, as the basis for the motor 
responses. 
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Figure 1. Human Response Time Is Proportional to the Degree of Rotation 

 
3.3.2  Current Research  
 
 For the current effort we designed an experimental protocol to overcome the 
limitations identified above. First, APE-X was trained to make distinct movements when 
presented with pairs of objects that were either identical or not identical. Pairs where 
one object was a rotated version of the other were not used in this training. Second, the 
sequence generation network, described above, was trained to generate patterned 
activity when shown an object in a series of rotated positions. Finally, APE-X was tested 
with a pair consisting of an object and the same object rotated. It correctly reported a 
match. Thus the system was able to generalize from its training to new situations. 
 
 This series of experiments is described here in more detail. According to the 
delayed match-to-sample (DMS) protocol, APE-X was repeatedly presented with pairs 
of objects in succession:  either two identical objects (a “match”) or two different objects 
(a “non-match”). A value system with dopamine-dependent STDP was used to modify 
synaptic strengths in the spiking networks so that APE-X successfully learned to make 
an appropriate “match” or “non-match” arm movement in response to the pair of objects. 
Sixteen stimuli (two different objects and their mirror image objects, each positioned at 
four orientations) were used. Pairs were presented with a one-second delay between 
each object. For training of match responses, the same object was presented twice. For 
training of non-match responses, each object was paired with its mirror object in the 
same orientation. It is important to note that two successive stimuli were never of the 
same object at different orientations. 
 
 After training, the value system was turned off so that synaptic modifications 
would not be made during testing. We then tested APE-X to verify that it would not give 
a match response unless the presented objects were exact matches. As expected, APE-
X gave a “match” response in 39 of 40 trials in which the two stimuli were identical. It 
also correctly gave a “non-match” response in 276 of 280 trials where the stimuli were 
not identical, including 140 of the latter trials where the second stimulus was a rotated 
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version of the first. This result was expected, since the sequence generation network 
had not yet been trained. 
 
 To activate and train the sequence generation network, APE-X was presented 
with a series of stimuli in which the same object was rotated for 0, 90, 180, and 270 
degrees about a central axis. The stimuli were the same set of sixteen used for the 
earlier training, but they were now presented to APE-X in an ordered sequence 
reflecting the rotation of the object. 
 
 APE-X was then tested, as before, using pairs of stimuli that were rotated 
versions of the same object. APE-X now reported that two stimuli matched. Thus the 
same stimuli that APE-X reported did not match prior to training the sequence 
generation network were now reported as matching. APE-X could not have been 
conditioned to respond as it did, since its response involved changes after conditioning 
had been completed. We conclude that it must be using its new ability to mentally rotate 
objects internally in order to produce this match response.  
 
 We repeated the entire training and testing procedure with five different 
“subjects,” each differing only in the initial conditions used to generate their detailed 
neuroanatomy. The overall performance for the five subjects was 92% correct for all test 
trials, whether match or non-match.  
 
  
3.4   Spiking Neural Model Simulation of Working Memory 

 Retaining a fleeting perception for seconds or minutes after a stimulus 
disappears is critical for many forms of behavior, cognition, and learning. Working 
memory (WM) allows for the cognitive manipulation of stored information about stimuli, 
and such memories can be used in decision making. An interesting and well-known 
feature of WM is its ability to hold simultaneously only a limited number of different 
items. 
 
 In both human and animal studies, WM has often been investigated using a DMS 
paradigm. Typically an animal is shown a brief stimulus to be remembered for a few 
seconds or minutes. After a delay period, during which no stimulus is presented, the 
animal is shown a second stimulus that might or might not be identical to the first. A 
correct response, indicating whether the two stimuli match, results in the delivery of 
reward.  
 
 We made a large-scale spiking neural model with persistent activity that enables 
multi-item working memory. The network incorporates three distinct biological 
mechanisms for generating persistent activity. All three mechanisms operate 
simultaneously in real cortical circuits, and each mechanism has been shown to be 
independently capable of supporting persistent activity. These mechanisms are: (1) 
dense reentrant connectivity producing attractor dynamics, (2) short-term synaptic 
plasticity enabling robustness against brief drops of firing rate, and (3) relatively long-
acting glutamatergic receptors maintaining excitation over durations longer than input 
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inter-spike intervals. Persistent activity in the network is characterized in relation to 
parameters controlling these mechanisms. DMS tasks also require a neural mechanism 
for detecting a match between persistent activity and activity evoked by the current 
stimulus. We proposed a matching mechanism based on the segregation of visual and 
memory-related inputs onto fast-responding glutamatergic and longer acting 
glutamatergic receptors of postsynaptic neurons. The ability of the network to perform 
visual DMS tasks was examined. Finally, we characterized the capacity of the network 
to store multiple items simultaneously as a function of network size. A full report on this 
work and relevant scholarly references can be found in Appendix A3.  
 
 
3.5   A Novel Method for Analysis of Time Series Data 

 Simulations of biologically realistic neuronal networks or experimental studies all 
produce large amount of data, the majority of which can be characterized as showing 
neuronal spikes as a function of time, i.e., spike trains. Many techniques have been 
developed to identify correlations or patterns within such data. However, current 
techniques are not always successful at detecting and identifying patterns in lifelike 
scenarios:  a large set of neurons, arbitrary delays between firings in the pattern, jitter in 
firing times, and firing failures. Determining patterns in the data is an important first step 
in analyzing the underlying phenomena and making a reasonable biological 
interpretation. 
 
 We have developed a neuronal pattern detection algorithm capable of detecting 
patterns in the data, where the only parameter required is the maximum duration of a 
pattern one is looking for. This method can be used on thousands of neurons to detect 
and identify patterns with arbitrary delays, and it is robust against jitter and firing 
failures. It is an extension of the method of Lopes-dos-Santos, et al. (2011). 
 
 For this purpose, a neuronal pattern P consists of a set of neurons (N1, N2, etc.) 
and associated delays (D1, D2, etc.). Activation of pattern P at time t is defined as the 
firing of neuron N1 at time t+D1, the firing of N2 at time t+D2, etc. A neuronal pattern 
can be activated at multiple times (T1, T2, etc.). If the firing pattern is activated enough 
times in the data set, then it is possible to statistically identify the set of neurons and 
corresponding delays to fully characterize P.  
 
 The algorithm is as follows:  1) Identify the “strongest” neuronal pattern P in the 
data, 2) Determine if P is statistically significant, 3) Remove all activations of P from the 
data, and 4) Repeat steps 1-2-3 until no statistically significant pattern is detected. 
 
 Two matrices are required to extract the “strongest” neuronal pattern: a 
correlation matrix C and a delay matrix D. Element C(i,j) of matrix C corresponds to the 
maximum value of the Pearson correlation between the spike activity of neuron i against 
neuron j as the spike activity of neuron j is time-shifted from a delay of 0 to d ms. The 
amount of shift required to generate the maximum correlation in C(i,j) is stored in D(i,j). 
Given the results of Lopes-dos-Santos et al., we extract the strongest eigenvector from 
C, which represents the strongest neuronal pattern P. 
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 To determine if P is statistically significant, we randomly time shuffle the spiking 
data and extract the corresponding correlation matrix C. The maximum eigenvalue E 
determines the significance of pattern P. If the eigenvalue associated with the 
eigenvector of P is greater than E, then P is statistically significant. 
 
 Once P is identified then all spiking data related to P are aligned using the 
associated delays. This alignment detects the activations of pattern P. The removal of 
these activations is then achieved by randomly shifting all spikes of P at activation 
times. 
 
 To test the method, we used a two-pattern case and a large synfire model. In the 
first test, we simulated a set of 10 neurons spiking over a 1,000 sec period. Two random 
patterns were generated; each was formed by 4 neurons spiking in order over 50 msec 
or less. Each pattern was activated 30 times over the simulation. To model a more 
lifelike biological scenario, each spike was randomly jittered within +-2ms, and each 
activation included only 3 of the 4 neurons (25% firing failure rate). Two hundred Monte 
Carlo simulations were carried out, and the 2 patterns were correctly detected and 
identified in 94.5% of the tests. 
 
 The second test case simulated a synfire chain within a simulation of 2,000 
spiking neurons. The neurons were fully connected with generally weak synapses, while 
a small subset of neurons was connected with strong synapses to form the synfire 
chain. The synfire chain was built as 10 pools of 30 neurons each with a propagation 
delay of 3 msec. The chain was randomly activated 10 times with random current levels. 
The method detected and identified 99% of the neurons forming the synfire chain (298 
out of the 300).  
 

3.6   A Novel Unmanned Air and Ground Vehicle 

 A central and critical aim of this work has been to construct a mobile platform 
useful for surveillance both under manual control and potentially under various degrees 
of autonomous control by simulated neural systems. The platform described below is a 
proprietary design developed under this contract. Patents are pending. 
 
3.6.1  Overview.  
 
 The QuadHopter™ (Figure 2) uniquely combines features of an unmanned aerial 
vehicle (UAV) and an unmanned ground vehicle (UGV) to form the first unmanned 
aerial-ground vehicle (UAGV). Thus it can carry out tasks to which neither type of 
traditional unmanned vehicle is suited. It has many potential applications including 
information gathering, surveillance, communications, payload delivery and retrieval, and 
search and rescue. 
 
 Based on a quad rotorcraft for flight stability and maneuverability, the 
QuadHopter™ incorporates four powered wheels for mobility on surfaces. In addition to 
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driving on the ground by using its wheels alone, the QuadHopter™ can travel along 
ceilings by taking advantage of the lift provided by the rotors to keep the wheels in 
contact with the ceiling. 
 
 Another key feature is the hook and central gear system that allows the 
QuadHopter™ to perch on structures such as building parapets and walls or to hang 
from overhead structures such as wires. Thus, the device can be used for surveillance 
operations, for example, while using minimal power. When the operation is complete, 
the QuadHopter™ simply flies away. 
 
 The QuadHopter™ design can be implemented at a range of scales depending 
on functional, payload, and power requirements. The current version described below is 
about 26 inches (66 cm) square and 11 inches (28 cm) high and weighs about 4.5 
pounds (2 kg). This size is suitable for use inside buildings as well as outdoors. The 
frame is constructed of carbon fiber using novel puzzle-fit and tongue-and-groove 
methods. The radio-control, telemetry, and flight-stabilization systems are built from 
commercial off-the-shelf (COTS) components and can be implemented in several ways 
for different purposes. A variety of sensor or effector payloads can be envisioned. To aid 
in control system development and flight training, a computer simulation of the 
QuadHopter™ has been developed. 
 
 

 
 

Figure 2. QuadHopter™ UAGV 
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3.6.2  Engineering Considerations and Design Iterations  
 
 The device has gone through three major design revisions in an evolutionary 
process. Brief descriptions of the three evolutionary stages of the design are presented 
below. 
 
 The initial design began with a standard quad X frame with added wheels to 
allow the device to drive on the ground like a four-wheel drive robot (Figure 4). Given 
that cameras on a flying robot are usually mounted on the bottom to see the ground 
below, and that cameras on standard ground robots are usually on the top or on a 
vertical arm to see as far ahead as possible, it seemed desirable to have a camera or 
other sensor that could pivot 360 degrees about the center of the robot. The central 
differential gimbel was designed to achieve this goal. A short boom attached to the 
gimbel would allow for mounting a camera or other sensor, and a second boom 
mounted at 180 degrees to the short boom would allow additional devices to be 
mounted (see Figure 4). Shortcomings of the initial design became apparent and were 
addressed in the next iteration. 
 

 
Figure 3. First Version of the QuadHopter™ Showing Wheels and Central Gimbel 

with Camera and Accessory Boom 
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 The second revision of the design included many improvements in the overall 
concept (Figure 5). The frame was redesigned to make it smaller to better fit through 
standard doorways while retaining the 11-inch wheel diameter. The details of the wheel 
design were improved to make driving easier. An initial titanium frame was replaced by 
a carbon fiber frame. More powerful motors were used for the rotating center 
mechanism and for driving the wheels. The design included a provision for collective 
pitch for the props which was later removed to simplify construction.  
 
 The most significant addition was that of a hook, attached to the central gimbel 
as a second boom. Properly located, the hook allows the device to hang from wires or 
similar structures. This approach would save power or possibly allow the device to 
charge inductively from a power line. The dimensions of the hook and the gap between 
the wheels are such that the device can also perch on roof parapets, wall tops, or other 
such ledges. This capability would be useful to monitor activities in an area of interest 
from a variety of vantage points.  While this second version was an improvement over 
the initial design, it was determined that there were areas where improvements that 
could be made in a third version. 
 
 

 
Figure 4. Second Version of the QuadHopter™  
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 The third version (Figures 2 and 5) incorporates a significant revision to the way 
the wheels were driven. The ring gear used to drive each wheel in the previous version 
was inverted so that it could be driven from outside, and one center drive motor on each 
side was used. In addition to allowing for future modifications to the surface contact part 
of the wheel (e.g., adding tank treads), the addition of the drive gear made the carbon 
frame more rigid. Integration of the new Robotis AX-12 servos for the drive wheels and 
the center gimbel payload mechanism allowed for even more speed and torque. 
 
 Figure 5 also identifies some of the COTS components used for the control 
systems and sensors. We developed code for the Ardruino Nano to drive the AX12 
smart servos so that we could add more control options to the QuadHopter. Future 
plans include a better way to intuitively control the device and possibly to allow a single 
pilot to also operate a robot arm or other tool.  
 
 

 
Figure 5. QuadHopter™ Version Three  
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3.6.3  Simulator  
 
 In order to facilitate testing and operator training, we have employed a 
commercial simulator called AeroSim RC. It interfaces with the ArduPilot Planner 
software from DIY Drones to get real data from the QuadHopter™. We converted the 
original SolidWorks design files to the Open Scene Graph format usable by AeroSimRC 
(Figure 6). This enabled “hardware in the loop” mode, where real Quadhopter can fly 
either in the simulated world of AeroSim RC or the real world. All the data that is coming 
from the real sensors will affect the simulated device. This can be very useful for 
debugging complicated code. More remains to be done with the simulation, but the 
center-pivoting camera is movable in three axes and can be stabilized by its own 
movement. Also, the wheels will rotate in contact with the ground. The simulator can 
also be useful for training people to fly the craft without risk. 
 
 

 
 

Figure 6. AeroSim RC Simulator Showing QuadHopter™ 

 
 
4.0   RESULTS AND DISCUSSION 
 
 During our research we were able to implement and test WTA networks that 
exhibit the properties of a working memory. The research leads to an alternative 
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architecture being proposed for which WM capacity does not scale with respect to 
network size.  This result is consistent with data showing that animal species with very 
different brains sizes may have similar visual WM capacity.  
 
 In the mental imagery research involving the APE-X BBD we were pleased to see 
results that were obtained. The timing results for match trials (Figure 7) indicated that 
the time to make a match response was proportional to the angular difference between 
the two presented objects, as was the case for the human subject data originally 
reported by Shepard and Metzler (Figure 1). The response time is the elapsed time 
between the offset of the second object image and the initiation of the BBD’s “match” 
movement. Note that the data are from the newly completed series of experiments as 
described in this text. During this research, we overcame some of the limitations of our 
earlier simulation work by integrating the networks into APE-X, training APE-X to make 
appropriate motor responses, and testing APE-X in the mental rotation task. We found 
that APE-X successfully carried out the task, and we obtained behavioral data that 
matched experimental data from human subjects. 
 

 
 

Figure 7. Evidence of Mental Imagery in a BBD 

 
 We believe the neuronal pattern detection algorithm can be extended to analyze 
temporal patterns in any type of time series such as patterns in weather data, video 
feeds, etc. In the case of video feeds, for example, this method could be adapted to 
identify objects moving with any type of repetitive patterns (people walking, cars driving, 
etc). 
 
 Additional detailed results and discussions can be found in in the manuscripts 
located in the Appendix.  
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
14 

5.0   CONCLUSIONS 
 
 This research involved the construction and testing of WTA networks which 
demonstrated the benefits of CAS connectivity over center-surround connectivity along 
with the acquisition of sensorimotor coordination.  The results of the mental imagery 
portion of the research using APE-X suggest useful approaches to understanding the 
conscious generation of images that will be explored further.  We also believe that the 
new analytical method for spiking data devised during this effort can be applied to any 
type of time series. 
 
 Furthermore, we believe that the QuadHopter™ concept presented above can be 
used in a variety of contexts, both for research and development, and for practical 
tasks. Further engineering development in terms of the best array of sensors, effectors, 
and scale will be needed to obtain optimum performance in a specific context.  
 
 This research demonstrates the ability to develop neuronal networks based on 
knowledge of higher brain functions.  The results can be seen as taking a step closer to 
the vision of autonomous systems that many desire. 
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Versatile Networks of Simulated Spiking Neurons Displaying 
 Winner-Take-All Behavior 

 
Y. Chen, J.L. McKinstry, and G.M. Edelman 

The Neurosciences Institute 
 

Abstract 
 

We describe simulations of large-scale networks of excitatory and inhibitory spiking 
neurons that can generate dynamically stable winner-take-all (WTA) behavior. The 
network connectivity is a variant of center-surround architecture that we call center-
annular-surround (CAS). In this architecture each neuron is excited by nearby neighbors 
and inhibited by more distant neighbors in an annular-surround region. The neural units 
of these networks simulate conductance-based spiking neurons that interact via 
mechanisms susceptible to both short-term synaptic plasticity and STDP. We show that 
such CAS networks display robust WTA behavior unlike the center-surround networks 
and other control architectures that we have studied. We find that a large-scale network 
of spiking neurons with separate populations of excitatory and inhibitory neurons can 
give rise to smooth maps of sensory input. In addition, we show that a humanoid Brain-
Based-Device (BBD) under the control of a spiking WTA neural network can learn to 
reach to target positions in its visual field, thus demonstrating the acquisition of 
sensorimotor coordination. 
 
1. Introduction 
 
Analyses in computational neurobiology have successfully used mean-firing-rate 
neuronal models to simulate the spatiotemporal patterns of neural activity that arise in 
interconnected networks of excitatory and inhibitory neurons, such as those in the 
vertebrate cortex (von der Malsburg, 1973; Obermayer et al, 1990; Dayan and Abbot, 
2001).  Certain aspects of these systems may, however, require the modeling of the 
dynamic properties of large populations of individual neurons, each calculated with 
millisecond precision. Simulations of such systems are challenged with issues such as 
nonlinearity, instability, and resistance to scaling.  Here we address these issues by 
simulating networks of spiking neurons that are capable of sensory map formation and 
sensorimotor interactions. 
 
It has been proposed that local microcircuits of the cerebral cortex can function as 
Winner-Take-All (WTA) networks (Douglas and Martin, 2004). In such systems, an 
individual pattern of input can evoke network responses that suppress possible 
alternative responses. In addition, the population response to any sensory stimulus is 
sparse. This proposal is attractive for several reasons. On theoretical grounds, WTA 
networks have demonstrated utility in models of pattern recognition (von der Malsburg, 
1973), map formation (Obermayer et al, 1990), selective attention (Itti et al, 1998), and 
working memory (Wilson and Cowan, 1973). The proposal is also supported by cortical 
anatomy. A characteristic structural feature of WTA networks is long range inhibition 
among cellular components coupled to short range excitation. Anatomical evidence exists 
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for such an architecture in animal nervous systems (Perin et al, 2011; Goldman-Rakic, 
1995; Kisvárday et al, 2000; Holmgren et al, 2003; Fino and Yuste, 2011). Indirect 
physiological evidence (Derdikman et al, 2003; Haider et al, 2010) has also been obtained 
for local excitation and surround inhibition in the cerebral cortex of mammals.  
 
Rate-based WTA networks with center-surround architecture have been extensively 
explored (Dayan and Abbott, 2001). Although these networks have been shown to possess 
useful properties, they lack the temporal precision and biological realism of networks of 
spiking neurons. In some prior studies of spiking models capable of WTA behavior the 
neuronal network structure has been highly simplified.  Networks are simulated as a one-
dimensional chain or ring (Shriki et al, 2003; Laing and Chow, 2001). The inhibitory 
population may be reduced to one unit (Rutishauser et al, 2011; Oster et al, 2009), or the 
inhibitory population was removed altogether and modeled as direct inhibitory 
connections among excitatory neurons (Laing and Chow, 2001; Choe and Miikkulainen, 
2004).  One large-scale spiking model did produce smooth maps of orientation columns, 
but this model also combined excitatory and inhibitory neurons into a single population, 
and did not incorporate spike-timing dependent plasticity (STDP) (Choe and 
Miikkulainen, 2004).  If the complex circuits of the cortex function as WTA networks, 
biologically realistic spiking models must exhibit robust WTA network dynamics that can 
explain behavior at the systems level. 
 
In the present study we describe a general and robust computer simulation of the activity 
within neural networks containing thousands of excitatory and inhibitory spiking 
neurons in a variant of center-surround architecture that we call center-annular-
surround (CAS). In this architecture each neuron is excited by nearby neighbors and 
inhibited by more distant neighbors in an annular-surround region (Figure 1A). The 
neural units of these networks simulate conductance-based spiking neurons that interact 
via mechanisms susceptible to both short-term synaptic plasticity and STDP. We show 
that such CAS networks display robust WTA behavior unlike the center-surround 
networks we have studied.  We demonstrate for the first time that a large-scale network of 
spiking neurons with separate populations of excitatory and inhibitory neurons can give 
rise to smooth maps of sensory input (Obermayer et al, 1990). We also show that, a brain-
based device (BBD) under the control of a system of such networks learns to reach to 
visual targets.  
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(A) 

 
(B) 

Figure 1 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
19 

 
2. Materials and Methods 
 
Spiking Neuronal Networks - Each modeled network (Figure 1A) is comprised of 3 
interconnected populations of spiking neuronal units (Izhikevich, 2010) distributed over 
two-dimensional square grids. Each population is composed of units simulating one of 
three functional classes of spiking neurons: input (“thalamic”), excitatory, and inhibitory.  
The parameters of simulated neurons in each class are tuned so that the voltage 
waveform mimics its biological counterpart (Izhikevich, 2003). The synapses display 
STDP and short-term plasticity dynamics as previously described in detail (Izhikevich 
and Edelman, 2008). The neuron model equations, short-term synaptic plasticity 
equations, and STDP equations are presented below.  
 
Neuronal Dynamics – Spiking dynamics of each neuron were simulated using the 
phenomenological model proposed by Izhikevich (2003). The model has only 2 equations 
and 4 dimensionless parameters that could be explicitly determined from neuronal 
resting potential, input resistance, rheobase current, and other measurable 
characteristics. We present the model in a dimensional form so that the membrane 
potential is in millivolts, the current is in picoamperes and the time is in milliseconds: 
 

syntr IuvvvvkvC −−−−= ))((   (1) 

{ }uvvbau r −−= )(    (2) 
 
where C is the membrane capacitance, v is the membrane potential (in mV), vr is the 
resting potential, vt is the instantaneous threshold potential, u is the recovery variable 
(the difference of all inward and outward voltage-gated currents), Isyn is the synaptic 
current (in pA) defined below, a and b are parameters. When the membrane potential 
reaches the peak of the spike, i.e., v > vpeak, the model fires a spike, and all variables are 
reset according to v ← c and u ← u+d, where c and d are parameters. Supplementary 
Table I lists each of the neuron model parameters used in all experiments. At the start of 
all simulations, v was set to -60 for all neurons, whereas u was set to a different random 
value for each neuron drawn uniformly from the range 0 to 100. 
 
Short-Term Synaptic Plasticity – The strength of synapses varied as a function of the 
presynaptic neuron’s firing history. We assume that the synaptic conductance (strength) 
of each synapse can be scaled down (depression) or up (facilitation) on a short time scale 
(hundreds of milliseconds) by a scalar factor x. This scalar factor, different for each 
presynaptic cell, is modeled by the following one-dimensional equation 

 
pxxxx x ←−= ,/)1( τ  when presynaptic neuron fires. (3) 

 
x tends to recover to the equilibrium value x = 1 with the time constant τx, and it is reset 
by each spike of the presynaptic cell to the new value px. Any value p < 1 decreases x and 
results in short-term synaptic depression, whereas p > 1 results in short-term synaptic 
facilitation. The parameters, 

 

τxand

 

p , for each combination of presynaptic and 
postsynaptic neuron types were as follows: exc.exc.: 150, 0.8; exc.inh.: 150, 0.8; 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
20 

inh.exc.: 150, 0.8; inh.inh.: 150, 0.8; thalamicexc: 150, 0.7; thalamicinh.: 200, 
0.5.  
 
Synaptic Kinetics – The total synaptic current to each neuron is simulated as 
 

 

Isyn = gAMPA (v − 0) + gNMDA
[(v + 80) /60]2

1+ [(v + 80) /60]2 (v − 0) + gGABAA
(v + 70) + gGABAB

(v + 90) + gSH (v + 90)  (4) 

 
where v is the postsynaptic membrane potential, and the subscript indicates the receptor 
type. Each conductance g (here we omit the subscript for the sake of clarity) has first-
order linear kinetics g’= − g / τ with τ =5 ms, 150 ms, 6 ms, 150 ms, and 5,000 ms for 
each of the simulated AMPA, NMDA, GABAA,GABAB, and SH receptors, respectively. The 
SH “receptors” were an ad hoc method for adding slow hyperpolarizing (SH) currents in 
order to bias cells to remain off for longer periods of time; this improved pattern 
separation, and was used only in the BBD experiments. 
 
Each firing of an excitatory neuron increases gAMPA by xc, where c is the synaptic 
conductance (synaptic weight) in nanoSiemens and x is the short-term 
depression/potentiation scaling factor as above; gNMDA was increased by nmda_gain xc, 
where nmda_gain is the ratio of NMDA to AMPA conductances and is found 
experimentally to be less than one (Myme et al, 2003). Similarly gabab_gain and 
gabash_gain are used to adjust the contribution of gGABAB and gSH respectively, relative to 
gGABAA.  The gain factor for gSH was set to zero for all simulations except for the BBD 
experiments in which case the gain factor was set to 0.2 for the first 45 simulation 
seconds and was set to 0.0 for the remainder of the simulation. 
 
STDP – The change in conductance (weight) of each synapse in the model is simulated 
according to spike-timing-dependent plasticity (STDP): the synapse is potentiated or 
depressed depending on the order of firing of the presynaptic and postsynaptic neurons 
(Bi and Poo, 1998). We use the following equations to update each plastic synapse, s, in 
the network: 
 

)()(/ / postprec tttSTDPcc −+−= δατ     (5) 
cs =        (6) 

 
where 

 

δ(t) is the Dirac delta function that step-increases the variable c. Firings of pre- 
and postsynaptic neurons, occurring at times 

 

tpre,tpost , respectively, change c by the 
amount 

 

αSTDP(t)  where 

 

α is the learning rate for the synapse,

 

t = tpost − t pre is the 
interspike interval, and  
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where A+ = 0.005, A− = 0.001, τ+ = τ− = 20 ms. The variable c decays to zero 
exponentially with the time constant 

 

τc =1 s, and s is updated once every 50 ms for 
computational efficiency.  Note that for simplicity, each synapse was modeled with a 
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single weight, s; therefore the STDP rule changed both AMPA and NMDA components of 
the synapse proportionally. 
 
Synaptic scaling – Synaptic scaling was performed for each neuron in order to maintain 
the total of all synaptic strengths on a given connection pathway, stotal, at a constant value. 
This scaling was performed for every neuron every 50 ms during the simulation. In 
addition, each synapse was prevented from exceeding smax or going below zero, regardless 
of learning rules and normalization. 
 
Anatomy – The Input network is composed of 484 simulated ‘thalamic’ neurons that 
provide excitatory input to “cortical” excitatory and inhibitory neurons.  “Thalamic” 
neurons project to both “cortical” populations with uniform random connectivity. Current 
levels to these “thalamic” cells were adjusted to evoke distinct patterns of activity in the 
input area with a maximum firing rate of approximately 100 Hz for either abstract 
patterns or video camera input.  
 
The cortical network contained 3,481 excitatory cells and 900 inhibitory cells. All 
connections made from cortical excitatory neurons to other neurons followed local-type 
connectivity.  In this connectivity, a two-dimensional Gaussian probability distribution, 
centered on each cell, determined the probability of forming an input synapse to 
surrounding neurons. This probability density function was scaled to generate, on 
average, a pre-specified number of excitatory synapses onto each cell (see Supplementary 
Material for details). The initial synaptic strength between connected neurons also varied 
as a Gaussian function of the distance between them.  The total of all synaptic efficacies 
for each simulated neuron was scaled to sum to a constant value unique to each neuron 
type. 
 
In contrast, inhibitory neurons in the system exhibited center-annular-surround (CAS) 
connectivity.  For CAS connectivity, each neuron received synaptic input only from 
neurons located in a surrounding area specified by a minimum (rmin) and maximum (rmax) 
radial distance from the postsynaptic cell. The probability of forming a connection with a 
neuron in the annulus was a function of the distance separating the cells. The function 
used was a Gaussian with standard deviation σ, centered at (rmin+rmax)/2. This probability 
distribution function was scaled to create a prespecified number of inhibitory synapses 
onto each neuron.  The synaptic strengths for the surround-type connection were also 
initialized using the same function, with the same parameters.  However, the synaptic 
strengths of this type were scaled to make their sum equal to a constant value under 
experimental control. 
 
We found that this CAS connectivity arrangement confers WTA properties to the 
networks. Each distinctive pattern of neural activity in the “thalamic” network evoked 
enhanced neural activity in only a few localized patches in the “cortical” area due to 
competitive interactions between local neural populations (Figure 1B). Local patches of 
interconnected neurons that on average respond better than surrounding cells ‘win’ a 
dynamic competition and remain active. In contrast, neurons in the surround are 
suppressed by inhibition and do not fire. A detailed description of the network along with 
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all the parameter settings used in the experiments can be found in the Supplementary 
Material, and connectivity parameters can be found in Supplementary Tables II-IV. 
 
Winner-Take-All measure – We use the following measure of population sparseness (S) 
to characterize WTA dynamics in the excitatory population:   

 

S =
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where 

 

rj  is the number of spikes emitted by neuron j during the measurement interval, 
(one second in this paper) and N was the number of neurons in the population (Willmore 
and Tolhurst, 2001). 
 
 
Brain Based Device (BBD) - To demonstrate that a simulated network can control real-
world behavior, we designed and constructed a humanoid brain-based device (BBD). The 
device is 50 cm high and uses a black and white wireless webcam for vision. Each arm of 
the BBD contains eight Dynamixel servomotors (Robotis, Irvine, CA, USA). In the specific 
experiments described here only the two shoulder joints function; all other joints remain 
stationary with the arm extended. Shoulder joint angles provided by the motors 
determine the posture of the arms. A miniature PC (VIA Technologies, Fremont,USA) 
mounted on the back of the BBD maintains wireless communication between the device 
and the neuronal networks simulated on a Mac-Pro (Apple, Inc. Cupertino, CA).  
 
A simulated motor neural network constructed and incorporated into the BBD controlled 
its behavior.  This network was similar to the sensory network, but was composed of only 
1600 excitatory and 400 inhibitory spiking neurons.  Different patterns of activity in the 
motor area neurons specified distinct equilibrium postures of the left arm. Since the 
camera of the BBD was aimed at the left robotic hand, each of these postures presented a 
distinct pattern of visual input to the system. The motor region received non-topographic 
connections from the output of the sensory network. By adjusting parameters of feed-
forward connections to the motor area from the cortical area receiving camera input, this 
system came to associate the visual input evoked by different postures to the motoric 
output pattern that would generate and maintain those postures.  
 
Position error calculation – We measure the position error of a given joint as follows.  
For every arm posture measured during testing, we find the closest posture found during 
the training period.  We then measure the angular difference of the joint between these 
two postures.  We report the median and the maximum joint position error across all 
joints, reaching trials, and subjects. 
 
 
3. Results 
 
3.1. Spiking Activity in a WTA Network.  
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We first characterized spiking activity in the network as a function of the parameters of 
network connectivity (Figure 1). All analyses were carried out under the assumption of 
CAS connectivity described above, and examined the effects of different patterns of 
relative synaptic strengths on the various pathways in the network. 
 
In these analyses, each simulated network received identical random input to ‘thalamic’ 
cells and started with identical random neural states, but had different values of total 
excitatory-to-inhibitory and inhibitory-to-excitatory synaptic strengths. The total weight 
of inhibitory-to-inhibitory synapses was kept equal to 2.4 times the total weight of 
inhibitory-to-excitatory synapses to limit the parameter space. The strengths of 
excitatory-to-excitatory synapses were kept constant in all simulations. Connection 
strengths were not modulated by STDP but were subject to the short-term synaptic 
plasticity inherent in modeled neurons (Izhikevich and Edelman, 2008). Exact values of 
all parameters are given in supplementary Table II. All spikes that the networks emitted 
between 2 and 3 seconds after the onset of thalamic input were recorded, at which time 
most simulations had reached steady state.  

 
Figure 2 
 
Figure 2A illustrates the dynamic behavior of these networks for 2,000 different 
combinations of excitatory-to-inhibitory and inhibitory-to-excitatory synaptic strengths.  
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The color of each pixel in Figure 2A is determined by a measure of the WTA behavior of 
the network dynamics in the same one second time period. Since WTA behavior entails 
sparse activity, we use a standard measure of population activity sparseness to 
characterize WTA behavior (see Materials and Methods). The measure will be close to one 
for networks in which only a small subset of neurons respond to the “thalamic” input with 
elevated firing rates. Parameters modeled in each raster plot in Figures 2B-D are 
indicated by a corresponding labeled arrow in Figure 2A. 
 
When both excitatory and inhibitory connection weights were relatively high, local 
patches of excitatory neurons had a high maximal firing rate, as shown in the 
corresponding spike raster plot (Fig. 2B). However, only a localized subset, (25% of this 
neuronal population), maintained high firing rates; most neurons were silent. This 
outcome, in which a subset of neurons fires persistently at a high frequency and 
suppresses the activity of other neurons, defines a WTA network state.  The majority of 
the parameter space explored corresponds to the WTA state as indicated by the 
predominance of warm colors in Fig 2A.  
 
The spike raster plot in Fig. 2C shows activity within a network in a traveling wave state.  
The firing of both excitatory and inhibitory neurons moves as a localized “patch” through 
the network rather than remaining stationary in a WTA state. Fig. 2D shows a network 
that remained in an initial rhythmic, periodic state for a prolonged period after stimulus 
onset, but entered a WTA state towards the end of the third second of stimulus 
presentation.  Single excitatory neurons maintained a state of high-frequency spiking 
activity only when connection strengths were within the WTA region delineated in Fig. 
2A. Supplementary Figures 1-3 show close up plots from portions of Figures 2B-D. 
For comparison, we also simulated the spiking behavior of networks of excitatory and 
inhibitory cells linked together in three different, non-CAS architectures. The three 
alternative network architectures analyzed were: (1) standard center surround 
architecture in which connectivity among all neurons was determined by a two-
dimensional Gaussian probability distribution centered on each cell, inhibition having a 
larger σ than excitation; (2) an inverse connectivity in which the excitatory connections 
project to an annular surround and the inhibitory neurons connect locally, and (3) 
uniform random connectivity among all neuron types (excitatory-to-inhibitory, 
inhibitory-to-excitatory, excitatory-to-excitatory, and inhibitory-to-inhibitory).  (See 
Supplementary Material for details of the parameters used.) In the same parameter space 
analyzed in Figure 2A, none of these connection types supported WTA behavior, 
characterized by stable patch activity.  The maximum population sparseness measure for 
the three alternative network architectures listed above were 0.16, 0.54, and 0.21 
respectively, whereas for the CAS network, the majority of the parameter space yielded 
population sparseness measures close to 1 (Fig. 2A). The most common firing patterns 
evoked in these neural networks were quasi-rhythmic firings of excitatory neurons in the 
10 to 20 Hz range punctuated with short bursts of localized activity in inhibitory neurons. 
Among the different connectivities we analyzed, only the CAS motif gave rise to localized 
persistent activity that defines a WTA state.  
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3.2. Using CAS Architecture to Develop Maps of Orientation Selectivity 
 
Smooth maps, in which nearby neurons have similar response properties, are ubiquitous 
in sensory and motor regions of the cerebral cortex (Obermayer et al, 1990; Kaschube et 
al, 2010). For example, in the primary visual area of many animals smooth retinotopic 
maps coexist with smooth maps of stimulus orientation.  Computational neural models 
have successfully generated such smooth maps (Choe and Miikkulainen, 2004), but not, 
so far, with detailed networks of excitatory and inhibitory spiking neurons. It is therefore 
of interest to investigate whether such simulated networks of interconnected excitatory 
and inhibitory spiking neurons might produce such maps. We found that by slowly 
increasing inhibition in the model over time as experimentally observed (Ben-Ari et al, 
2012), the CAS network described above develops smooth orientation maps when trained 
with oriented visual input. 
  
The “thalamic input” to the “cortical” cells were given a rough initial topographic bias 
(Choe and Miikkulainen, 2004) by limiting the maximum distance over which “thalamic” 
inputs traveled to synapse on “cortical” cells. This simulation allows a maximum radius of 
0.65 mm in a simulated 2mm by 2mm cortical region. Training stimuli consisted of 4,000 
images of computer-generated elongated Gaussian shapes distributed throughout the 
visual field at random locations and orientations as in Choe and Miikkulainen (2004).  
STDP was used to train a network of 60 by 60 excitatory and 30 by 30 inhibitory neurons 
for 40,000 simulated seconds. Each of the 4,000 stimuli was presented to the network 20 
times, and each presentation lasted 500 msec.  
 
To assure smoothness in the resulting maps, more abstract models of orientation map 
formation have generally made use of an annealing process (Obermayer et al, 1990). This 
annealing process takes the form of a slow decrease of the size of the subpopulation of 
neurons active during the presentation of a stimulus (Kohonen, 1984). We sought a 
biological mechanism to accomplish this slow decrease in the active population size.  
Recent experimental evidence suggests that early during development, GABAergic 
conductances are excitatory rather than inhibitory (Ben-Ari et al, 2012).  We 
hypothesized that such a lack of inhibition would lead to a large fraction of the population 
becoming active, and that slowly increasing inhibition during map formation would cause 
a monotonic reduction in active neurons. This has the same effect as the more artificial 
annealing process implemented algorithmically in abstract models of map formation.   
 
We approximated this mechanism in our simulations by slowly increasing the GABAergic 
conductance of synapses onto excitatory cells, from zero to a plateau value.  This plateau 
is reached one fourth of the way through the simulation (See Supplementary Table III). 
This mechanism had the desired effect. Early during map development, nearly one-
quarter of the neurons in the network responded to each stimulus.  This number was 
reduced to a small fraction of the neurons when inhibition reached its maximal level, and 
the active population remained small for the remainder of the training period (data not 
shown).   
 
Finally, we tested the proposed annealing mechanism in conjunction with the CAS 
architecture for the ability to develop smooth maps. As shown in the resulting map 
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(Figure 3), nearby neurons in the network tend to have similar orientation preferences, 
i.e. the map is smooth, a characteristic of the primary visual cortex of cat, ferret, tree 
shrew, and monkey (Obermayer et al, 1990; Kaschube et al, 2010).  In addition, dark 
areas are found at the centers of so-called orientation pinwheels, around which cells 
responding to all of the different orientations are found. The fact that each color occurs 
multiple times in the map reflects the fact that groups of cells respond to all orientations 
at each location in the visual field.  This simplified spiking model based on the visual 
cortex develops orientation columns qualitatively similar to those found in the animal 
species mentioned above. 
 

 
Figure 3. 
 
3.3. Learning Hand-eye Coordination in a BBD Controlled by a Large Scale Spiking 

Network  

 
The work of Davison and Frégnac (2006) demonstrated that STDP could be used to 
establish a mapping between two spiking networks with correlated spiking activity.  We 
confirm that this finding holds in a real-world task in a large-scale model of 
approximately 7,000 spiking neurons, which was able to learn a mapping from visual 
targets to motor actions in a BBD.   
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To do so we coupled together two CAS networks to create a system that could learn the 
correlations between individual maps. After training, the output of a system of such 
networks controlled behavior in a real-world task: reaching to targets within the visual 
field of a BBD.  To do this, we integrated a CAS-network motor map in a BBD. This motor 
map gave rise to autonomous arm movements, a form of “motor babbling”. With 
experience, this system came to correlate the location of the hand in its own visual field to 
the motor command needed to maintain the hand at that location, i.e. hand-eye-
coordination.  
 
The upper torso of the BBD maintained a seated posture that allowed a sufficient range of 
arm motion (see figure 4).  The head unit containing a gray-scale video camera was aimed 
and held fixed during the experiment to allow the full range of motion of the left arm to fit 
into the camera’s field of view.  A bright yellow object (5cm x 5 cm x 7 cm) attached to the 
end of the left arm allowed the visual system to detect the location of the end effector.  
The neural simulation controlled only the two shoulder joints of the BBD. Any given 
combination of the two joint angles yielded a unique arm posture and thus determined 
the location within the visual field of the bright object.  The goal was to form a mapping 
between the visual input and joint angle commands that gave rise to that input.  

 

 
 

Figure 4. 
 
The neural network controlling the behavior of the BBD consisted of the visual map area 
(V) and the motor area (M).  Area V was a two-dimensional array of 3,481 excitatory and 
900 inhibitory neurons.  The network formed a topographic map of the visual input from 
the camera (see Supplementary Material for details of visual input processing). The 
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activity of each neuron in this array was roughly proportional to the brightness level of 
the corresponding pixel from the video input.  
 
Area M, the motor area, contained 1600 excitatory and 400 inhibitory neurons.  Each 
excitatory neuron was assigned a preferred set of angles for each of the two shoulder 
joints.  Nearby neurons in this predetermined map responded to similar joint angles, but 
different patterns of activity among these cells could evoke all possible positions of the 
left arm. In order to translate from neuronal firings to joint angle in the left shoulder of 
the BBD, the output of these cells was pooled using population vector averaging 
(Georgopoulos et al, 1986). That is, for each joint, the preferred joint angles of all cells, 
weighted by the corresponding firing rate, were summed to determine an equilibrium 
posture. Joint angles were recalculated in this manner, and the angles of the shoulder 
joints were adjusted every 250 milliseconds. 
 
To learn the mapping from visual input to motor output, area V was connected to area M 
with initially random one-way synaptic connections. In order to allow arbitrary mappings 
to form, the connections were all-to-all.  STDP was calculated as described in Materials 
and Methods and was used to adjust the synaptic strengths during the learning process; 
short-term synaptic plasticity was used as described previously (Izhikevich and Edelman, 
2008).   In addition, the sum of the incoming synaptic strengths for each neuron was 
normalized to a constant value on this connection pathway.  Supplementary Table IV 
gives all parameters used in this experiment. 
 
In order to train the device to reach, a so-called motor-babbling reflex was incorporated 
in the BBD. During each movement trial of the training phase we directly stimulated one 
of nine different spots in the motor network by injecting current into excitatory neurons 
for 450 msec.  This effectively drove the arm into a corresponding posture in open-loop 
fashion within approx. 100 msec., and the arm remained in a constant posture for nearly 
400 msec. before the beginning of the next trial.  A total of 15 repetitions, each generating 
nine postures, were used during this motor-babbling phase.  During this time, STDP 
modulated the strength of connections between co-active neurons in the simulated visual 
and motor cortex, generating the visuomotor mapping. 
 
After the training phase, direct motor cortex stimulation was turned off, and the target 
yellow object was detached from the BBD.  With the arm of the BBD at its side, the target 
object was repeatedly placed by the experimenter in each of the nine spatial locations that 
it had occupied during training. This experiment was repeated five times; in each 
repetition, parameters and conditions were unchanged, except for initial synaptic 
strengths and connectivity that were controlled by a seed of the random number 
generator function from the standard C library (Kernighan and Ritchie, 1988). During the 
testing period, the arm moved in response to each new visual stimulus. Figure 5 shows 
the joint angles that correspond to the nine successive postures assumed by the BBD 
during training (blue) and testing (red) phases for all 5 experiments. The joint angles 
arrived at during testing cluster around those achieved in the training period, indicating 
an accurate mapping between visual and motor responses. To quantify the precision of 
equilibrium postures, a measure of the position error was recorded.  We define position 
error at a given joint as the difference between the joint angles of the visually evoked 
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postures during testing and those recorded during the training period (See Materials and 
Methods). The median joint angle error, pooled across the two joints and across subjects, 
was 0.3 degrees; the maximum error was 13.6 degrees. Variability in manually 
positioning the stimulus in the visual field of the robot contributed to the variability in the 
motor error. A video clip showing the behavior of the system after being trained to reach 
to four positions is available in the online Supplementary Material. 
 

 
Figure 5. 
 
4. Discussion 
 
Our studies indicate that large-scale simulations of networks of excitatory and inhibitory 
spiking neurons incorporating center-annular-surround anatomy and synaptic plasticity 
can generate dynamically stable behavior.  Such networks are versatile, as shown by their 
ability to form smooth maps, and they can serve as a basis for systems that learn 
sensorimotor coordination.   
 
How did competitive interactions in a network of spiking neurons lead to a network that 
can categorize external inputs? Initial synaptic strengths were randomly distributed, so 
neurons were not tuned to specific stimuli. For any particular pattern of input, some local 
population of neurons will, by chance, be slightly more responsive than alternative 
groups, and active neuronal groups will suppress activity in surrounding neurons.  The 
operation of STDP then acts to increase the synaptic drive from that input pattern of 
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activity. In addition, STDP and synaptic normalization force heterosynaptic reduction in 
the strength of synapses from uncorrelated input patterns. 
 
The model networks described in this paper rely upon the presence of short-range 
excitation and long-range inhibition. This result is consistent with recent theoretical 
arguments that long-range inhibitory interactions are critical for cortical map formation 
(Kaschube et al, 2010). Among the three different connectivity topologies we analyzed, it 
was expected that the standard center-surround architecture would have also produced 
WTA network behavior (Dayan and Abbot, 2001). However, only the CAS inhibition motif 
gave rise to the generation of localized persistent activity that characterizes a WTA state. 
It is possible that connection architectures other than the ones we tried might produce 
WTA behavior. Although we did explore the parameter space for the standard center-
surround model as we did for the CAS model in Figure 2a, it is also possible that even this 
connectivity might work under different parameter settings. It may prove informative to 
further explore analytically and empirically why the center-surround inhibition failed to 
produce WTA behavior in our simulations, and why the CAS architecture produced 
robust WTA behavior under these same conditions. 
 
We have demonstrated the establishment of a mapping between two maps given spiking 
input from the real-world. The work of Davison and Frégnac (2006) demonstrated that 
STDP could be used to establish a mapping between two areas with correlated spiking 
activity.  We confirm that this finding holds in a real-world task which, in our large-scale 
visuomotor model with approximately 7,000 spiking neurons, was able to learn a 
mapping from visual targets to motor actions in a BBD.  Since STDP requires consistent 
firing of presynaptic before postsynaptic neurons to potentiate synaptic efficacies, one 
might not expect that STDP would strengthen synapses from the visual to the motor area, 
given that motor commands occur well before any visual feedback from the arm 
movement occurs. However at high firing rates STDP is purely facilitory, so that all that 
was required to learn the mapping between visual and motor areas was a brief overlap 
between the time of bursts of spikes in the two areas.  This was accomplished by 
maintaining the BBD in each posture long enough to assure that both motor area and 
visual area achieved equilibrium. 
  
In the simulated network reported here at least one type of inhibitory neuron strongly 
inhibits an annulus in its surround while not inhibiting nearby neurons.  This differs from 
computational models in which inhibitory connection profiles have a Gaussian 
distribution with the strongest inhibition occurring within the neighboring region (Laing 
and Chow, 2001; Dayan and Abbot, 2001).  Such models are capable of WTA behavior 
because strong local excitation is greater than local inhibition, essentially removing that 
local inhibition.  In our spiking model, however, we did not obtain WTA behavior with 
strong local inhibition.  This may relate to the previous finding that spike synchronization 
can prevent competition in networks of spiking neurons (Lumer, 2000). Our simulations 
are in agreement with this finding (see for example, figure 2D). In addition, we have 
shown that WTA behavior can arise in large-scale spiking networks even in the presence 
of strong initial synchronization, if inhibitory neurons inhibit in an annular surrounding 
region rather than locally. We have found that WTA behavior still emerges in our CAS 
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network when we shrink the inner radius to zero indicating that some level of local 
inhibition may be tolerated (data not shown). 
 
Our model with annular surround inhibition also appears to conflict with anatomical 
connections observed among certain inhibitory cells within the cortex. Reports of high 
connection probabilities between nearby basket and inhibitory neurons (Holmgren et al, 
2003) and the finding that small basket cells tend to project little more than 100 microns 
from the cell body seem at odds with our model.  However, local connections from small 
basket cells may perform a different role than do large basket cells that project up to one 
mm from their cell bodies, and that have been reported to mediate lateral inhibition in 
cortical networks (Crook et al, 1998). Regardless of the mechanisms, our simulations lead 
to the testable prediction that inhibition should be stronger in some annular region 
surrounding inhibitory neurons than it is within the local region from which it receives its 
excitatory inputs. 
 
The behavior of our simulations demonstrates the versatility of networks of simulated 
spiking neurons endowed with CAS connectivity and activity-dependent synaptic 
plasticity. Further analyses of such simulations will undoubtedly prove to be a valuable 
tool leading to an understanding of brain function. They may also form a useful basis for 
more sophisticated brain-based devices, and for further theoretical studies of increasingly 
realistic brain networks. 
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Figure 1.  The Center-Annular-Surround (CAS) spiking network architecture 
leads to Winner-Take-All (WTA) dynamics.  (A) The CAS network architecture 
consists of interconnected spiking neurons, excitatory (green ovals) and inhibitory (red 
ovals).  Each population is arranged in a two-dimensional grid. Connections from 
representative cells are illustrated. Axons from excitatory neurons (green arrows) project 
to neurons within green areas. Axons from inhibitory neurons (red arrows) project to 
neurons in the transparent red annular areas. The sensory input projecting 
nontopographically to both the excitatory and inhibitory “cortical” populations is not 
shown.  (B) The CAS connectivity leads to WTA dynamics: small areas of high activity are 
surrounded by large regions with little activity. The firing rates of excitatory neurons in 
the network are shown as pixels with brightness proportional to firing-rate indicated by 
the scale bar to the right (in Hz). The number and size of the winning regions are 
functions of a variety of network parameters. 
 
Figure 2. WTA dynamics can occur in large regions of the parameter space of 
CAS networks. (A) A measure of winner-take-all behavior in a network is plotted as a 
function of synaptic weights coupling the excitatory and inhibitory neural populations. 
The measure we use is the highest firing rate of any neuron in the network, subject to a 
sparseness constraint that at least half of the neurons in the network are firing at less 
than 2 Hz; otherwise the measure is defined to be zero. The total synaptic conductance in 
nano-siemens (nS) (Izhikevich and Edelman, 2008)  in each individual inhibitory neuron 
from excitatory neurons is on the y-axis, and total inhibitory conductance received by 
each neuron, excitatory or inhibitory, is on the x-axis.  The orange and red areas indicate 
regions of the parameter space in which the network exhibits WTA behavior. The lower 
left region of the parameter space, labeled “Epileptic”, defines networks exhibiting 
epileptic dynamics in which all neurons fire indiscriminately to the stimulus. (B) to (D) 
are raster plots which show all spikes (blue dots) during the third second of the 
simulation for each excitatory neuron in the network. (B) All spikes of a network in a 
WTA state at parameters labeled “Winner-Take-All in Figure 2A. During this state some 
excitatory neurons (horizontal band of blue dots) fire persistently in response to a 
constant stimulus while others are silent. (C) At certain values of parameters, labeled 
“Traveling Wave” in Figure 2A, region of the parameter space, the network exhibits 
moving patches of activity instead of the stable patches shown in (B); this results in 
diagonal bands in the one-dimensional raster plot. (D) Occasionally the network requires 
more than two simulated seconds for a winner to emerge.  These “Transient Rhythmic” 
states result in all neurons firing synchronously and rhythmically for some time before a 
winning group emerges.  See Supplementary Fig. 1-3 for close up plots from Figures 2B-
D. A raster plot corresponding to the epileptic activity state is not shown. 
 
Figure 3. A simulated neural network develops a smooth orientation map 
similar to those of cat and primate visual cortex.  The map shows the preferred 
orientation of individual excitatory neurons arrayed in a 60 X 60 neuron grid. Pixel colors 
relate location of each neuron to its preferred orientation as indicated by the color bar at 
right of the map. Adjacent neurons in the network tend to have similar orientation 
preferences.  Brightness varies with orientation selectivity (dark = low selectivity, bright = 
high selectivity); dark areas are found at the centers of so-called orientation pinwheels. 
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Figure 4. STDP plus synaptic scaling forms a mapping between visual and 
motor maps. CAS networks were used in a humanoid BBD to demonstrate that such a 
system could learn sensorimotor coordination.  CAS networks consist of populations of 
excitatory (E) and inhibitory (I) neurons synaptically coupled as described in the text. 
Visual input from the video camera provided patterned input to “thalamic” (T) neurons of 
the visual area (V), while the output of excitatory neurons in the motor area (M) were 
used to control the two shoulder joints of the left arm.  After repeatedly stimulating the 
motor area in one of nine different locations, and thus moving the arm to one of nine 
different postures, a mapping formed from the visual area responses to the location of the 
hand to the motor area output that drove the hand to those locations.  
 

 
Figure 5. The BBD reaches accurately towards visual targets after training. 
During the testing period, the arm consistently moved in response to the visual stimulus. 
To demonstrate the accuracy of the movements, the joint angles of the commanded 
movements made during training (blue) and testing (red) are plotted in two-dimensional 
joint angle space every 200 ms for all 5 subjects.  Note that the joint angles achieved 
during testing cluster around those achieved in the training period showing the accuracy 
of the visually guided, learned movements.  
 

 
Supplementary Material.  
 
Neuron parameters. 
 
Table I. Neuron parameters.  

N
euron 

type 

A
rea 

C
 

k v
r  

v
t  

v
peak  

a b c d 

Excitatory V 80 3 -60 -50 50 0.01 5 -60 10 
Inhibitory V 20 1 -55 -40 25 0.15 8 -55 200 
Excitatory Motor 100 0.7 -60 -50 0 0.03 -2 -60 100 
Inhibitory Motor 20 1 -55 -40 25 0.15 8 -55 200 
Thalamic Input 200 1.6 -60 -50 40 0.01 15 -60 10 
 
 
Anatomy.  
 
The connectivity between model neurons fell into two classes: either local-type or 
surround-type. For local-type connectivity, a two-dimensional Gaussian probability 
distribution, centered on each postsynaptic cell, determines the probability of forming a 
synapse between each potential presynaptic neuron within a specified maximum 
distance, rmax   
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where a is a scale factor set to generate, on average, a target number of synapses on each 
postsynaptic cell, d is the distance between the presynaptic neuron and the postsynaptic 
neuron, µ is 0, and σ is the standard deviation.  In a similar manner, a two-dimensional 
Gaussian function was also used to specify the synaptic strength between connected 
neurons as a function of the distance between them in the network.  The total of all 
synaptic efficacies was scaled to sum to a constant parameter with units in nanoSiemens 
(nS). Thus both connection probability and strength were maximal between nearest 
neighbors, and fell off as a function of distance, controlled by the same parameter, the 
standard deviation of a Gaussian.  
 
For surround-type connectivity, a postsynaptic neuron receives synaptic connections 
from neurons located in a surrounding annular region specified by a minimum (rmin) and 
maximum (rmax) radial distance from the postsynaptic cell.  (This is equivalent to saying 
that each presynaptic neuron sends projections to postsynaptic neurons in an annular 
region). The probability of forming a connection with a neuron in the annulus is 
determined as a function of distance from the postsynaptic cell. The function used is a 
Gaussian with standard deviation σ, centered at µ=(rmin+rmax)/2. Thus a postsynaptic 
neuron connects with no neurons in the center of the annulus, has minimal connection 
probability at the minimum radius, increasing to the maximum probability half-way 
between the inner and outer radius, and falling off once again with increasing distance up 
to the outer radius, beyond which the connection probability is forced to zero.  This 
probability distribution function is scaled to create a target number of synapses for each 
postsynaptic neuron.  The synaptic strengths for the surround-type connection are also 
initialized using the same function, with the same parameters.  However, the sum of all 
synaptic strengths of this type was scaled to make the total equal to a constant value 
under experimenter control. 
 
In order to avoid boundary conditions in the network, the network was treated as a torus.  
Thus connections from neurons that would go outside of the network instead “wrap 
around” to connect with neurons on the opposite edge. 
 
Table II shows the parameters defining the anatomy and synaptic parameters of the CAS 
network used in the parameter space analysis in Results section 1. The table defines two 
types of information for every neural area: the neuron composition, and the synaptic 
connectivity for each neuron type. The first four columns of the table list, for each 
separate neural population in the simulation, the type of neuron, the area in which it is 
located, the number of neurons in the population, and the total number of synapses per 
neuron.  
 
The remaining columns define the connectivity for each type of neuron in the area.  
Multiple rows are necessary to define the connectivity for each postsynaptic type; one row 
is needed for each presynaptic neuron type forming synapses on the postsynaptic 
neurons. Pre-area and pre-type specify the presynaptic area and type of the neuronal 
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group projecting to the postsynaptic group. The next column specifies the percentage of 
the postsynaptic cell’s synapses allocated to this pathway.  The remaining columns 
provide all of the parameters used to specify details of the synaptic pathways as described 
in the paragraphs above. 
 
Table III shows the parameters defining the anatomy and synaptic parameters of the 
orientation selective map experiment in the Results section 2; the format is the same as 
that for Table II. 
 
Table IV shows the parameters defining the anatomy and synaptic parameters of the 
visuomotor coordination network used to control the arm of The BBD in the Results 
section 3; the format is the same as that for Table II. 
 
Close up of a portion of Figures 2B-D. 
 
Supplementary Figures 1-3 show close ups of figures 2B-D. 
 

 
Supplementary Figure 1. Close up of Figure 2B showing individual spike trains for a 
small subset of excitatory neurons.  See figure 2B caption for a complete description. 
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Supplementary Figure 2. Close up of Figure 2C showing individual spike trains for a 
small subset of excitatory neurons.  See figure 2C caption for a complete description. 
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Supplementary Figure 3. Close up of Figure 2D showing individual spike trains for a 
small subset of excitatory neurons.  See figure 2D caption for a complete description. 
 
 
 
Control experiment parameters. 
 
The following parameters were used in control experiments to demonstrate that the CAS 
architecture made an improvement in WTA behavior in our simulations. 
 
Standard Center-Surround architecture: 
In the classical center-surround topology, both excitatory and inhibitory neurons have 
local connection type but with different standard deviations.  This connection 
architecture has been reported to produce WTA dynamics (see main text for references). 
In this control experiment, excitatory neurons connected with inhibitory neurons in a 
Gaussian distribution with maximal distance (r_max) of 0.33mm and a standard 
deviation of 0.16mm. Inhibitory neurons connect to excitatory neurons and themselves in 
a wider Gaussian distribution with maximal distance (r_max) at 1.44 mm and larger 
standard deviations (sigma=0.8 mm) than excitatory connections. 
 
Excitatory surround, inhibitory center architecture: 
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An additional control experiment was conducted with a connection architecture is a 
reverse version of our CAS topology. That is, excitatory connections are annular surround 
type specified by r_min=0.1mm,  r_max=1mm and a Gaussian distribution centered at 
(r_min+r_max)/2 with a standard deviation of 0.3333 (sigma). Inhibitory connection, on 
the other hand, are local Gaussian type with r_max=0.333 and standard deviation of 
0.16. 
 
Uniform random excitatory and inhibitory architecture. In this control experiment, 
excitatory and inhibitory neurons have an equal probability of connecting to any other 
excitatory or inhibitory neuron. This is implemented as a local connection in which the 
maximal connection distance is set to cover the entire area (r_max=1.44 mm., r_min=0 
mm.) and standard deviation of the Gaussian distribution used to generate the 
connection probability is large enough to approximate a uniform distribution (sigma = 10 
mm.). 
 
 
Visual input to the BBD.  
 
Video was recorded with an Axis 207MW wifi camera. Black and white images with a 
resolution of 320x240 were transmitted at 30fps. The central portion of the video frames 
were used as input to a two-dimensional grid of on-center Retinal Ganglion Cells (RGC). 
The grid size was 21x21 neurons with a center area size of 3x3 and the surround area of 
6x6 neurons. Each RGC receives a current that is computed following the algorithm of 
Wohrer and Kornprobst (2009). These currents were constantly injected at each 
integration step until the next video frame was received. RGCs were modeled with the 
Izhikevich model (Izhikevich and Edelman, 2008) with the following parameters: C=100, 
Vr=-70mV, Vt=-50mV, k=1, a=0.005, b=0, c= -75mV, d=250, and Vpeak=10mV.  
 
Supplementary Video 
 
The online supplementary material includes a video showing the behavior of the BBD 
during testing, after it has been trained to reach to 4 visual locations. 
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Table II. Anatomical and synaptic parameters for the CAS network used in the 
parameter space analysis in results section 1. 
 

Postsynaptic neuron type

Postsynaptic area

N
um

ber of neurons

A
verage synapses per 

neuron

Presynaptic area

Presynaptic neuron type

Percentage of total 
synapses

rm
in (m

m
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rm
ax (m

m
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σ
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m
)

e stotal (nS)

sm
ax (nS)

Initial α

Final  α

Learning start  tim
e (m

s)

Learning end tim
e (m

s)

nm
da_gain

gabab_gain

Exc. V 3481 3520 V Exc. 12.5 - 0.1 0.05 0 22 10 0 0 0 0 0.5 0.1

V Inh. 25 0.1 1 0.8 0 0 to 
1600

20 0 0 0 0 0.5 0.1

Input Thalamic 62.5 - 1.44 2.5 0 900 50 0 0 0 0 0.5 0.1

Inh. V 900 2000 V Exc. 20 - 0.33 0.16 0 0 to
100

5 0 0 0 0 0.5 0.1

V Inh. 40 0.1 1 0.3333 0 0 to
240

15 0 0 0 0 0.5 0.1

Input Thalamic 40 - 4.0 10 0 10 10 0 0 0 0 0.5 0.1

Thalamic Input 441 0 - - 0 - 0 0 0 0 0 0 0 0 0 0.5 0.1
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Table III. Anatomy and synaptic parameters for the orientation selective map 
experiment. 
 

Postsynaptic neuron type

Postsynaptic area

N
um

ber of neurons

A
verage synapses per 

neuron

Presynaptic area

Presynaptic neuron type

Percentage of total 
synapses
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σ
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m
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e stotal (nS)

sm
ax (nS)

Initial α

Final  α

Learning start  tim
e (m

s)

Learning end tim
e (m

s)

nm
da_gain

gabab_gain

Exc. V 3600 2200 V Exc. 20 - 0.035 0.07 0 10 2 0 0 0 0 0.5 0.1
V Inh. 40 0.035 1 0.3333 0 400 10 0 0 0 0 0.5 0.1
Input Thalamic 40 - 0.65 0.25 0.5 20 10 0.01 0.01 0 10000000 0.5 0.1

Inh. V 900 2000 V Exc. 20 - 0.33 0.16 0 20 10 0 0 0 0 0.5 0.1
V Inh. 40 0.07 1 0.3333 0 180 10 0 0 0 0 0.5 0.1
Input Thalamic 40 - 1.44 10 0.5 30 2 0 0 0 0 0.5 0.1

Thalamic Input 400 0 - - 0 - 0 0 0 0 0 0 0 0 0 0.5 0.1
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Table IV. Anatomy and synaptic parameters for the visuomotor coordination network 
used to control the arm of the BBD. 
 

Postsynaptic neuron type

Postsynaptic area

N
um

ber of neurons

A
verage synapses per 

neuron

Presynaptic area

Presynaptic neuron type

Percentage of total 
synapses

rm
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e stotal (nS)
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ax (nS)

Initial α

Final  α

Learning start  tim
e (m

s)

Learning end tim
e (m

s)

nm
da_gain

gabab_gain

Exc. V 3600 2200 V Exc. 20 - 0.035 0.07 0 10 2 0 0 0 0 0.5 0.1
V Inh. 40 0.035 1 0.3333 0 400 10 0 0 0 0 0.5 0.1
Input Thalamic 40 - 0.65 0.25 0.5 20 10 0.01 0.01 0 10000000 0.5 0.1

Inh. V 900 2000 V Exc. 20 - 0.33 0.16 0 20 10 0 0 0 0 0.5 0.1
V Inh. 40 0.07 1 0.3333 0 180 10 0 0 0 0 0.5 0.1
Input Thalamic 40 - 1.44 10 0.5 30 2 0 0 0 0 0.5 0.1

Thalamic Input 400 0 - - 0 - 0 0 0 0 0 0 0 0 0 0.5 0.1
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Temporal Sequence Learning in Winner-Take-All Networks of Spiking 
Neurons Demonstrated in a Brain-Based Device 

 
ABSTRACT 

 
Animal behavior often involves a temporally ordered sequence of actions learned 
from experience. Here we describe simulations of interconnected networks of 
spiking neurons that learn to generate patterns of activity in correct temporal 
order. The simulation consists of large-scale networks of thousands of excitatory 
and inhibitory neurons that exhibit short-term synaptic plasticity and spike-
timing dependent synaptic plasticity. The neural architecture within each area is 
arranged to evoke winner-take-all (WTA) patterns of neural activity that persist 
for tens of milliseconds. In order to generate and switch between consecutive 
firing patterns in correct temporal order, a reentrant exchange of signals between 
these areas was necessary. To demonstrate the capacity of this arrangement, we 
used the simulation to train a brain-based device responding to visual input by 
autonomously generating temporal sequences of motor actions.  
 

 
INTRODUCTION 

 
A growing body of neurophysiological evidence suggests that patterns of activity 
in vertebrate brains observed during movement are commonly composed of 
temporal sequences of periods with steady-state firing rates lasting several 
hundred milliseconds separated by sharp transitions (Tanji, 2001; Averbeck et 
al., 2002; Nakajima et al., 2009).  This pattern of activity is also observed during 
sensory perception in gustatory cortex (Jones et al., 2007), and the operation of 
working memory (Seidemann et al., 1996). Although network models composed 
of mean-firing-rate neurons have been used to model sequential neural activity 
(Rhodes et al., 2004; Salinas, 2009; Verduzco-Flores et al., 2012), biological 
networks are composed of spiking neurons. Therefore understanding spiking 
networks with this capability requires further exploration (Liu and Buonomano, 
2009; Chersi et al., 2011). Given open questions regarding the stability and 
robustness of networks which learn to generate sequences (Verduzco-Flores et 
al., 2012), testing such networks in Brain-Based-Devices (BBD) is warranted 
(Edelman, 2007; McKinstry et al., 2008). 
 
In this paper we describe how our previous models of Winner-Take-All (WTA) 
spiking networks (Chen et al., 2013) can be coupled together and trained to 
generate segmented and sequential neural activity (See Rutishauser and Douglas, 
2009 for a mean-firing rate WTA network that generates sequences).  The neural 
system is composed of thousands of simulated biologically realistic excitatory and 
inhibitory spiking neurons. The single compartment neurons modeled in these 
simulations display voltage dynamics similar to those seen in cortical neurons. 
Activity of the simulated neurons reflects the conductance of ion channels in the 
model including: AMPA, NMDA, GABAa and GABAb (Izhikevich and Edelman, 
2008). Model synapses were subject to short-term synaptic plasticity (Zucker, 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
46 

1989). Spike-timing dependent plasticity (STDP) modeled long-term synaptic 
changes that allowed the system to learn temporal sequences.  
 
We found that networks composed of spiking neurons of this sort, when trained 
to respond to repeated sequences of sensory cues, generate temporally ordered 
patterns of neuronal activity consisting of brief steady states separated by sharp 
transitions that resemble those observed in functioning brains. We found that the 
present model could be used to control specific motor sequences in a brain-based 
device. The population activity pattern in this modeled neuronal system has 
similarities to those observed in primate prefrontal cortex during multi-
segmented limb movements (Averbeck et al., 2002).  
 

MATERIALS AND METHODS  
 
Spiking Neuronal Networks - Each modeled network (figure 1A) is comprised of 
up to three interconnected populations of spiking neuronal units (Izhikevich, 
2010) distributed over two-dimensional square grids. Each population is 
composed of units simulating one of three functional classes of spiking neurons: 
input, excitatory, and inhibitory.  The parameters of simulated neurons in each 
class are tuned so that the voltage waveform mimics its biological counterpart. 
The synapses display STDP and short-term plasticity dynamics as previously 
described in detail (Izhikevich and Edelman, 2008). The neuron model 
equations, short-term synaptic plasticity equations, and STDP equations are 
presented after a description of the network connectivity. 
 
Neuronal Network Architecture – Each of the three major structural and 
functional components of the modeled nervous system (figure 1B) consisted of a 
network of spiking neuronal units (Izhikevich) distributed over a two-
dimensional (2mm by 2mm) grid. The networks function as analogs of a thalamic 
nucleus (Input area), and two interconnected cortical areas, (Area A and Area B).  
 
The Input network contained 484 simulated neurons providing topographic 
excitatory input to Area A. Current levels to cells of the Input area were adjusted 
by trial and error to assure that the network responded to abstract patterns or 
video camera input by generating distinct response patterns of neuronal activity 
with a maximum firing rate of approximately 100 Hz. The Area A and Area B 
networks were each made up of 1600 excitatory cells as well as 400 inhibitory 
cells having fast-spiking behavior.  
 
Areas A and B had similar connectivity.  Each was composed of a Center-
Annular-Surround (CAS) network, a variant of center-surround networks, that 
we have found (Chen et al., 2013) to effectively generate WTA dynamics (Dayan 
and Abbott, 2001) in large-scale networks of spiking neurons. Any distinctive 
pattern of neural activity in the input area evoked enhanced neural activity within 
a few localized patches in both areas A and B. This CAS network architecture is 
illustrated in figure 1A. Connectivity between the model neurons fell into two 
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classes: either local-type or surround-type. Local-type connections are between 
nearby neighbors, whereas surround-type connections come from neighbors in a 
surrounding annular region.  Excitatory cells receive both local-type projections 
from excitatory cells and surround-type inhibitory projections (figure 1A). 
Inhibitory cells also received local-type projections from the excitatory cells and 
surround-type input from other inhibitory cells. The CAS connectivity confers 
WTA properties to both areas A and B. A complete description of all connectivity 
parameters is provided in the supplementary material. 
 
To create a network capable of storing and generating sequences of neural 
activity, we added reentrant connections between Areas A and B in the following 
way. In Area A (figure 1B), both excitatory and inhibitory cells also receive 
simulated feed-forward input that was approximately all-to-all. Area B neurons, 
on the other hand, do not receive connections from the input. Instead, they 
receive non-plastic, local-type input that is topographic from Area A. Area B 
excitatory neurons project back to Area A with plastic and widespread surround-
type connectivity. Synaptic changes resulting from STDP at these connections 
form a link between temporally adjacent patterns of neural activity within the 
sequence. These excitatory reentrant connections from Area B to Area A are 
widespread and cover most of the region since each activity pattern in Area B has 
two bumps, similar to the activity pattern shown in Supplementary Figure 5. This 
widespread connectivity enables the network to learn to associate arbitrary 
temporally adjacent patterns. This was useful for the BBD experiment, since the 
patterns that emerged within Area A during the initial training phase were not 
under experimenter control. 
 
Neuronal Dynamics – Spiking dynamics of each neuron were simulated using 
the phenomenological model proposed by Izhikevich (2003). The model has only 
2 equations and 4 dimensionless parameters that could be explicitly found from 
neuronal resting potential, input resistance, rheobase current, and other 
measurable characteristics. We present the model in a dimensional form so that 
the membrane potential is in millivolts, the current is in picoamperes and the 
time is in milliseconds: 
 

 

CÝ v = k(v − vr)(v − vt ) − u − Isyn   (1) 

 

Ý u = a b(v − vr) − u{ }   (2) 
 
where C is the membrane capacitance (in picofarads (pF)), v is the membrane 
potential (in mV), vr is the resting potential (in mV), vt is the instantaneous 
threshold potential (in mV), u is the recovery variable (the difference of all 
inward and outward voltage-gated currents in pA), Isyn is the synaptic current (in 
pA) defined below, a and b are unitless parameters. When the membrane 
potential reaches the peak of the spike, i.e., v > vpeak, the model is said to fire a 
spike, and all variables are reset according to v ← c and u ← u+d, where c (mV) 
and d (pA) are parameters. Supplementary Table I lists each of the neuron model 
parameters used in all experiments. At the start of all simulations, v was set to -
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60 for all neurons, whereas u was set to a different random value for each neuron, 
drawn uniformly from the range 0 to 100.  
 
Short-Term Synaptic Plasticity – The strength of synapses varied as a function of 
the presynaptic neuron’s recent firing history independent of long-term synaptic 
changes as found in biological synapses (Zucker, 1989). We assume that the 
synaptic conductance (strength) of each synapse can be scaled down (depression) 
or up (facilitation) on a short time scale (hundreds of milliseconds) by a scalar 
factor x. This scalar factor, different for each presynaptic cell, is modeled by the 
following one-dimensional equation 

 

 

Ý x = (1− x) /τx , x← px  when presynaptic neuron fires. (3) 
 

x tends to recover to the equilibrium value x = 1 with the time constant τx (in ms), 
and it is reset by each spike of the presynaptic cell to the new value px. Any value 
p < 1 decreases x and results in short-term synaptic depression, whereas p > 1 
results in short-term synaptic facilitation. The parameters, 

 

τx, in ms, and scale 
factor

 

p , for each combination of presynaptic and postsynaptic neuron type were 
as follows: exc.exc.: 150, 0.8;. exc.inh.: 150, 0.8;. inh.exc.: 150, 0.8;. 
inh.inh.: 150, 0.8;. thalamicexc: 150, 0.7;. thalamicinh.: 200, 0.5.  
 
Synaptic Kinetics – The total synaptic current to each neuron is simulated as 
 

 

Isyn = gAMPA (v − 0) + gNMDA
[(v + 80) /60]2

1+ [(v + 80) /60]2 (v − 0) + gNMDAVI

[(v +100) /60]2

1+ [(v +100) /60]2 (v − 0) +

gGABAA
(v + 70) + gGABAB

(v + 90)
 

(4) 
 
where v is the postsynaptic membrane potential, and the subscript indicates the 
receptor type. Each millisecond, each synaptic conductance is updated according 
to equation (5).   
 

 

gr(t) =
gr(t −1) − gr (t −1) /τr + gainr xs(t −1) when the presynaptic neuron fires
gr(t −1) − gr (t −1) /τr otherwise

 
 
 

      (5)  

 
where subscript r indicates the receptor type, τr =5, 150, 6, and 150 ms for the 
simulated AMPA, NMDA, GABAA and GABAB receptors, respectively. The 
voltage-independent NMDA channel (NMDAVI) is based loosely on the type of 
channel found between excitatory cells in layer 4 of visual cortex (Binshtok, 
2006); we used τr =150 ms for this simulated receptor as well. s(t) is the synaptic 
weight at time t. x is the short-term depression/potentiation scaling factor as 
above; gainNMDA is the ratio of NMDA to AMPA conductance and is found 
experimentally to be less than one (Myme et al., 2003). Similarly, gainGABAB is the 
ratio of GABAB to GABAA receptors.  The values of gainAMPA and gainGABAA were 
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always one.  The values of gainNMDA and gainGABAB used in the simulations are 
shown in Tables II and III. 
 
STDP – The long-term change in conductance (weight) of each synapse in the 
model is simulated according to spike-timing-dependent plasticity (STDP): the 
synapse is potentiated or depressed depending on the order of firing of the 
presynaptic and post-synaptic neurons (Bi and Poo, 1998). We use the following 
equations to update the state of each plastic synapse, s(t), in the network every 
millisecond: 
 

 

y(t) = y(t −1) − y(t −1) /τc + αSTDP(t)δ(t − tpre / post )     (6) 

 

s(t) =
s(t −1) + y(t) if mod(t,50) = 0
s(t −1) otherwise

 
 
 

      (7) 

 
where 

 

δ(t) is the Dirac delta function that step-increases the variable y. Firings of 
pre- and postsynaptic neurons, occurring at times 

 

tpre,tpost , respectively, change y 
by the amount 

 

αSTDP(t)  where 

 

α is the learning rate for the 
synapse,

 

t = tpost − t pre is the interspike interval, and  

 

STDP(t) =
A+ exp(−1/τ +)t ,t > 0

A− exp(−1/τ −) t ,t ≤ 0

 
 
 

 
 
 

.   (8) 

where A+ = 0.005, A− = 0.001, τ+ = τ− = 20 ms. The variable c decays to zero 
exponentially with the time constant 

 

τc =1000 ms. Each synapse is updated only 
once every 50 ms for computational efficiency. Note that for simplicity, each 
synapse was modeled with a single weight, s; therefore the STDP rule changed 
both AMPA and NMDA components of the synapse proportionally. In addition, 
each synapse was prevented from exceeding smax or going below zero, regardless 
of learning rules and normalization (see synaptic scaling). Values of smax for each 
connection pathway are provided in Supplementary Tables II and III. 
 
Synaptic scaling – Synaptic strengths at time t,

 

si
j (t), were scaled for each 

synapse i, in order to maintain the total of all synaptic strengths on a given 
connection pathway to neuron j, stotal, at a constant value: 

 

si
j (t) = si

j (t −1)
stotal

sk
j (t −1)

k =1

n j

∑

 

 

 
 
 
 

 

 

 
 
 
 
 

where nj is the number of synapses on the connection pathway to neuron j. This 
scaling was performed for every neuron each time the synapses were updated 
with equation (7). Values of stotal for each connection pathway are provided in 
Supplementary Tables II and III. 
 
Data analysis – To evaluate how accurately the network regenerated individual 
activity patterns within a sequence, we calculated the similarity between the 
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network response to each individual segment (pattern), and the population 
response during sequence training and recall. To measure similarity between two 
neural activity patterns in a given population at two different times, t1 and t2, the 
following steps were performed. The mean firing rate of each neuron in the 
population at time t1 was calculated within some small window, yielding a 
number for each neuron; this list of numbers formed a vector, f1.  The same was 
done at time t2, yielding vector f2. A match score was computed between the two 
population vectors by taking the normalized dot-product as follows: 
 

 

match =
f 1i ⋅ f 2i

i=1

n

∑
f 1 f 2

 

where n is the number of neurons in the population, and 

 

x  computes the length 
of the vector 

 

x . This match score provides a measure of similarity where one is a 
perfect match, and zero is a complete mismatch. 
 
The mean firing rate of each Area A excitatory neuron in response to each input 
stimulus in the sequence was recorded during the first epoch of sequence training 
during which there was no overlap in the input patterns presented or in the 
corresponding network responses to those patterns. Subsequently, during 
sequence training and free recall phases, these templates were used to quantify 
how closely an observed pattern of neural activity resembled each individual 
segment of a sequence.  To do this, the mean firing rate vector of Area A neurons 
was computed every 50 msec of sequential behavior.  A match score was then 
calculated between each of the sub-pattern templates and the template of each 
50-msec population firing rate segment. This method can detect whether ongoing 
spiking activity reflects multiple sub-patterns of a sequence at the same time. It 
makes no assumptions about the time-course of sequence generation. 
 
Brain Based Device – To investigate a simulated nervous system in a real-world 
device, we designed and constructed a humanoid BBD (figure 2). This device is 
approximately 20 inches high and uses a black and white wireless webcam for 
vision. Each arm contains eight Dynamixel motors (Robotis, Irvine, CA, USA). In 
the experiments described here only the two shoulder motors function; all other 
joints remain stationary with the arm extended. Shoulder joint angles provided 
by the motors determine the posture of the arms. A miniature PC (VIA 
Technologies, Fremont,USA) mounted on the back of the BBD maintained 
wireless communication between the device and the spiking neuronal networks 
simulated on a Mac-Pro (Apple, Inc. Cupertino, CA). The robot operated 
approximately three times slower than real-time during experiments. 
 
To test the sequence generation network in the BBD, a motor area in addition to 
area A and B was added to enable the system to generate motor sequences (see 
Supplementary Figure 1).  This network was the same size as the excitatory-
inhibitory networks in Areas A and B, with 1,600 excitatory, and 400 inhibitory 
spiking neurons, and had similar parameters as well.  Different patterns of 
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spiking of motor area neurons specified distinct equilibrium postures of the left 
arm using population vector coding as described in the Supplementary Material. 
Since the video camera was aimed at the robotic hand and remained fixed during 
the experiments, each of these postures, in turn, evoked a distinct pattern of 
visual input to the system. The motor region received non-topographic 
connections from the output of Area B in the sequence generation network. These 
connections were also subject to STDP and homeostatic plasticity, which allowed 
arbitrary sensorimotor transformations to develop during training. A more 
detailed description of the network along with the parameter settings used in the 
experiments can be found in the Supplementary Material. 
 

RESULTS 
 
Simulated neural activity during temporally segmented behavior – Before 
describing the BBD experiment, we illustrate the capability of the sequence 
network to learn to generate sequences of simulated responses to sensory inputs. 
The system of reentrantly coupled CAS networks can learn to reproduce a 
temporal sequence of eight consecutive input patterns. These individual patterns 
were simulated by means of current injections into Area A excitatory cells (see 
Supplementary Figure 2 for resulting network activity patterns). Multiple 
presentations of a given temporal sequence to the network constituted a training 
regimen. A given sequence consisted of an ordered series of eight distinct, 
randomly generated input patterns. Each pattern was presented for one second. 
After thirty-two seconds of training, the input was discontinued. At this point, the 
network continued to regenerate the eight patterns in correct order. Figure 3A 
shows a raster plot of the spiking of all excitatory and inhibitory neurons in the 
simulation as the system autonomously cycled through the trained sequence for 
700 ms. The pattern of activity of the neuronal population consisted of a series of 
stable microstates – periods in which each neuron fires at a steady rate – each 
lasting ~100 msec, flanked by briefer, more complex transition states.  
 
A brief account of the mechanisms by which the network develops sequence 
generation ability will aide in understanding what follows.  One way to form a 
network that recognizes and generates temporal sequences of input patterns is to 
establish serial connections between distinct neuronal groups.  If each neuronal 
group responds to a different input pattern – due to WTA dynamics – and a 
sequence of unique patterns is presented, then the neuronal groups will be 
activated successively. Given sufficient temporal overlap between the activity in 
successively responding neuronal groups, Hebbian mechanisms will act to 
strengthen the connections between them.  These connections favor activation of 
the next neuronal group in the sequence in the absence of the external input, 
allowing for internal pattern generation of an arbitrary temporal sequence 
learned through experience. Separating the network into two populations, Area A 
reflecting the current pattern, and Area B reflecting the prior pattern, allows 
simultaneous activity in temporally adjacent neuronal groups, one in each WTA 
area, facilitating synaptic change via Hebbian learning.  
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Figure 3A illustrates the mechanisms underlying the microstate transitions 
between neuronal group activations within a temporal sequence after training. At 
the time labeled T1 in figure 3A, the activity in area A that reflected pattern 4 
(blue dots) ceased. Active neurons in area B no longer received input and ceased 
to fire at time T2 when voltage independent NMDA currents, which characterize 
this network, decayed.  Due to the loss of lateral inhibition, neurons in Area B 
giving rise to pattern 5 (green) began to fire at time T3 in response to input from 
area A. Once these Area B cells for pattern 5 were activated, they triggered the 
firing of cells in Area A that correspond to pattern 6 (red) at time T4. At time T5, 
cells in Area A corresponding to pattern 5 no longer received input from Area B 
and ceased to fire. The network continued to advance through a series of 
microstates in this fashion until all patterns were generated. 
 
Figure 3B reflects an analysis of spiking data from this simulated network, 
acquired over a longer period, 24 seconds. Each row in the figure plots the match 
score (in 50 ms time bins) to one of the eight training patterns. White is a perfect 
match, while black indicates a complete mismatch.  The last training repeat is 
from t=24 to t=32.  Subsequently, external stimulation was removed and STDP 
was discontinued in order to test whether training was successful. Nevertheless 
network activity continued autonomously. After presenting any one pattern in the 
sequence, the network repeatedly cycled through the patterns until another input 
stimulus was presented. Because the network had been presented with repeated 
transitions from pattern 8 to pattern 1 during training, the network cycled 
through all eight patterns repeatedly until it was interrupted. In order to test that 
these results were reproducible, the simulation was performed five times in total 
using different pseudorandom number seeds from the standard C library 
(Kernighan and Ritchie, 1988) to distribute the initial synaptic connectivities and 
strengths in the networks; in every case the system recalled eight patterns in the 
correct order.  
 
Although the system of networks repeatedly regenerated the learned sequence 
autonomously, it nonetheless remained responsive to novel external input. To 
demonstrate this, we interrupted the autonomous activity every eight seconds by 
presenting the input corresponding to a different member of the set of learned 
patterns. For example, as shown in figure 3B at t=37 sec., pattern 6 was 
presented out of order for one second to reset network activity. Subsequently the 
sequence continued in the trained order. Thus, after being presented with a 
repeated series of input patterns, this system of networks correctly anticipated 
the next pattern in a temporal sequence. Figure 4 shows plots of the average 
match score of each pattern in a sequence during the one second presentation of 
the previous pattern. During the second presentation of the sequence from t=9 to 
t=16, the match score is zero (blue solid line), but during the fourth training trial 
from t=25 to t=32 the match score to the anticipated pattern increases after 250 
ms (red dashed line), indicating that the system has formed an association 
between temporally adjacent patterns in the sequence. Similar results were 
obtained in all five simulations with different initial conditions. 
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Motor control of a BBD - To demonstrate the use of this system of simulated 
neuronal networks to regulate real-world behavior in real-time, the spiking 
output of the sequence generation network was used to control three-
dimensional movements of a BBD. The task for the device was to learn to move 
its hand autonomously in a pre-specified order through four different locations in 
its visual field. Visual input from the BBD’s camera was used to drive a retina 
model that projected topographically to the Input area of the sequence generation 
network.  This allowed the BBD to learn a sequence of visual stimuli (See 
Supplementary Material for details of the retina model).  The BBD was placed in 
a seated position with its camera looking towards its left side. A bright object was 
placed in its hand to provide salient stimulation at the location of the BBD’s left 
hand in the visual field. Figure 5 shows examples of the raw video input from the 
camera with the arm in each of the four postures used in the experiment. To 
generate the desired sequence of segmented arm movements, the pattern of 
spiking excitatory cells of Area B was used as input to the simulated motor 
network. To establish the hand-eye coordination that this task requires, two 
angles of the right shoulder of the robot were successively manipulated to 
position its hand for 1 second in each of the four locations in the visual field. This 
was accomplished by injecting appropriate current into groups of neurons within 
the simulated motor area. This was repeated a total of 5 times. During this first 
training stage from t=1 to t=20 seconds, this system learned to discriminate 
between the four different spatial visual patterns.  STDP was activated on the 
pathway from the Input area to Area A. The CAS network operating in Area A 
developed sparse activity patterns discriminating these four Input area patterns 
(Chen et al., 2013) (See Supplementary Figures 3-5 for example of activity 
patterns from one simulution). Non-plastic topographic connections from Area A 
to Area B essentially create a copy of Area A’s pattern of activity in Area B. 
 
A second training stage was used to allow the system to learn hand-eye 
coordination. The stimulation patterns from stage one were repeated from t=21 
to t=40 seconds while STDP was activated on the pathway from Area B to the 
motor area. During this stage, this system came to associate the visual responses 
in Area B evoked by different postures with the pattern of motoric output that 
generated and maintained these postures (figure 5).  After this training stage, 
hand-eye coordination was established, but sequence learning had not yet been 
achieved. 
 
A final training stage was used to train the visual sequence network to generate 
the sequence of visual patterns corresponding to a sequence of arm movements.  
During this stage, from t=41 to t=60 seconds, STDP was activated on the pathway 
from Area B to area A for the first time. The system was trained by moving the 
arm of the device once again five times through the sequence of four postures, 
pausing one second at each posture. Subsequently, after the camera input to the 
system was discontinued, the BBD continued to autonomously generate motor 
commands that evoked movements similar to those used during the training 
phase.  Each segment of the autonomous gestures lasted ~400 ms The 
experiment was performed five times incorporating different initial network 
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parameters. Each time it reproduced the correct continuous sequence of 
movements. Figure 6 shows a trace of the movements made by the hand of the 
BBD during the five experiments, plotted in Cartesian coordinates both during 
the last training stage (green), and for 20 seconds after training during 
autonomous motor sequence generation (red).  Positions were calculated from 
joint angles recorded every 200 ms during the simulation. One of the five 
subjects showed some error and consistently “cut” the upper corner, generating a 
different shape than the other four subjects. The self generated arm trajectories 
approximate the training trajectories. 
 
We verified that the system remained responsive to external visual stimulation 
while it continued to generate the trained sequence autonomously.  For each of 
the five subjects, visual stimulation was resumed at t=100 seconds.  While the 
BBD continued to cycle through the trained sequence, the bright object used for 
training was moved sequentially by the experimenter to each of the locations in 
space it occupied during training and was held in place from 3 to 10 seconds.  In 
19 of 20 trials (five subjects tested at four locations) the BBD moved its hand to 
the location of the object and held it there until the experimenter removed the 
object from the visual field, at which point the BBD resumed the learned 
sequence from its present location.  In one trial, the BBD moved its hand to the 
object, but then resumed the sequence prior to stimulus removal. 
 

DISCUSSION 
 
The robust recognition and regeneration of motor sequences known to occur in 
animals is accomplished by networks of spiking neurons. Here we show that this 
basic capability can be simulated using large-scale networks of spiking neurons. 
The computational model employed here can be further elaborated to explore 
sequence recognition and generation in networks consisting of groups of 
reentrantly connected neurons. The simulations demonstrate how networks 
composed of thousands of densely interconnected spiking neurons can respond 
adaptively to patterned sensory input by generating autonomous, temporally-
ordered sequences of neural activity. We found that the operation of STDP to 
shape the distribution of synaptic strengths within and among WTA networks can 
give rise to network responses able to control complex behavior in a robotic 
device. 
 
The system described here builds upon our previous work with large-scale 
spiking networks (Chen et al., 2013). The prior work explored the use of WTA 
networks for visual pattern categorization and feed-forward mappings between a 
sensory and motor map.  The prior system was not capable of learning sequences.  
The present work demonstrates that coupling two WTA spiking networks 
together with specific reentrant connections leads to the ability to regenerate 
sequences after experience.  The prior system was entirely sensory driven, while 
the present work allows internally generated network activity in the absence of 
sensory input (figure 3), yet remains responsive to external input. Further, the 
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rapid microstate transitions observed in this network are consistent with cortical 
microstate transitions. 
 
Several theoretical models of behavioral sequence generation have been reported 
in the literature. Rhodes et al. (2004) proposed a mean-firing-rate model, N-
STREAMS, which reproduces the physiological results of Averbeck et al., (2002).  
Salinas studied a mean-firing-rate simulation that incorporates rank-order-
selective (ROS) neurons into a network and showed that the model could learn 
sequential motor actions given such neural responses.  The activity of the ROS 
neuronal units was built-into the model, and did not emerge through learning. 
Verduzco-Flores et al. (2012) created a small mean-firing-rate network with 200 
neurons that could learn multiple sequences with shared subsequences. Their 
model required temporally adjacent input patterns to partially overlap in time. 
Finally, Chersi et al. (2011) investigated a spiking network model that generates 
chains of temporal sequences of neural activity similar to those in our model and 
comparable to neurophysiological responses found in the intra-parietal lobe in 
primates.  They used four separate pools of 500 neurons each to represent one of 
4 different actions.  Sparse connections between the 4 pools were subject to 
STDP. They showed that repeated activation of the neurons in the 4 pools in a 
given temporal order via simulated current injection eventually lead to correct 
recall of the remaining sequence after injecting only the first pattern.  Our model 
does not require the use of discrete pools of neurons; rather such pools emerge 
automatically within each network through a WTA competition in the CAS 
architecture.   
 
It is interesting to consider wither there is a benefit to using spiking neurons 
instead of rate based neurons in the brain-based device. The sequence generation 
network may have worked just as well with a model incorporating mean-firing 
rate neurons. Nevertheless it is important to demonstrate that spiking networks 
can generate such behavior, because animal nervous systems incorporate spiking 
neurons.  This work demonstrates that spiking networks incorporating STDP can 
be reliably trained to generate sequences in the real-world. 
 
By using simulated neuronal networks to control the behavior of a BBD we found 
that a real world device can be trained to generate autonomous, multi-segmented 
behavior.  After training the system by presenting the target pattern of video 
input in one-second time steps, the BBD regenerates this sequential input 
pattern, but at a faster rate.  The BBD was able to recreate movements composed 
of four consecutive steps in the correct order. Although the device can remember 
and reproduce multiple sequences of behavior, each posture within any sequence 
must be unique. Otherwise the subsequent posture would be ambiguous.  
Learning more complex behaviors will require incorporation of longer temporal 
contexts than those provided by the immediately preceding pattern.  
 
The spiking activity corresponding to consecutive equilibrium postures in the 
behavioral sequence overlap in time, similar to activity reported in primates 
(Averbeck et al., 2002). This can be seen in figure 3B from second 24 to 32. For 
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example, shortly after the network responds with a high match score to input 
pattern 3 at t=26, network activity begins also to match pattern 4.  The match 
scores (shades of gray) to each subsequent pattern begin to increase well before 
the pattern is presented to the network. In primates, this overlap in neural 
responses reflects current and future gestures made by the animal as it draws 
shapes “in the air”. Averbeck et al. (2002) also reported that the neural activity 
pattern corresponding to the current gesture was more strongly represented than 
the activity pattern reflecting the upcoming movement.  This behavior is seen in 
our network. The match score for the current pattern, pattern 3, in figure 3 at 
t=26 is higher than the match score for the upcoming pattern 4. 
 
Over time, spiking activity in the model network transits through a series of 
microstates, each characterized by a stable unique pattern of steady-state firing 
rates (figure 3A). Similar behavior has been observed in mammalian cortex. For 
example, neurons in the gustatory cortex in rodents (Jones et al., 2007), and in 
the prefrontal cortex of primates (Seidemann et al., 1996) progress through 
sequences of states, identifiable in examinations of simultaneously recorded 
neuronal ensembles. As in the simulation reported here, these states lasted for 
hundreds of milliseconds, with rapid transitions on the order of 50 ms Our model 
suggests that such microstate transitions may be explained as reentrant 
interactions (Edelman, 1978) between multiple WTA networks.  
 
Acknowledgements 
We thank Joseph A. Gally for numerous helpful comments and suggestions on 
the manuscript. We are grateful to Yanqing Chen for numerous helpful 
discussions and development of WTA networks. Donald Hutson built the custom 
BBD for us. Richard Martin developed the computer interface to the BBD, and 
assisted with the BBD experiments. This work was supported in part by DARPA 
through ONR Grant N00014-08-1-0728 and by AFRL Cooperative Agreement 
FA8750-11-2-0255 to Neurosciences Research Foundation. For support of late 
developments we are grateful to the Mathers Charitable Foundation. The U.S. 
Government is authorized to reproduce and distribute reprints for Governmental 
purposes notwithstanding any copyright notation thereon. The views, opinions, 
and/or findings contained in this article/presentation are those of the 
authors/presenters and should not be interpreted as representing the official 
views or policies, either expressed or implied, of the Defense Advanced Research 
Projects Agency, the Air Force Research Laboratory,  the Department of Defense, 
or the U. S. Government. 
 
References 
 
Averbeck, B.B., Chafee, M.V., Crowe, D.A., and Georgopoulos, A.P. (2002). 

Parallel processing of serial movements in prefrontal cortex Proc Natl Acad 
Sci U S A. 99: 13172-13177. 

Bi GQ and Poo MM (1998). Synaptic modifications in cultured hippocampal 
neurons: depen- dence on spike timing, synaptic strength, and postsynaptic 
cell type. J. Neurosci. 18, 10464-10472. 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
57 

Binshtok AM, Fleidervish IA, Sprengel R, Gutnick MJ. (2006). NMDA receptors 
in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2C 
subunit. J Neurosci 26(2):708-15. 

Chen Y, McKinstry JL, Edelman GM (2013). Versatile networks of simulated 
spiking neurons displaying winner-take-all behavior. Front. Comput. 
Neurosci. 7:16. doi: 10.3389/fncom.2013.00016 

Chersi F, Ferrari PF, Fogassi L. (2011). Neuronal chains for Actions in the 
Parietal Lobe: A Computational Model. PLoS ONE, 6(11):e27652. 

Dayan P and Abbott LF (2001). Theoretical Neuroscience: Computational and 
MathematicalModeling of Neural Systems. MIT Press, Cambridge, 
Massachusetts, pp. 255-256. 

Edelman GM (1978). Group Selection and Phasic Reentrant signaling: A Theory 
of Higher Brain Function in The Mindful Brain, MIT Press. 

Edelman GM (2007). Learning in and from brain-based devices. Science 
16:318:1103-5. 

Izhikevich EM (2003) Simple Model of Spiking Neurons. IEEE Transactions on 
Neural Networks. 14:1569-1572. 

Izhikevich EM, Edelman GM (2008). Large-scale model of mammalian 
thalamocortical systems. Proc Natl Acad Sci U S A. 105(9):3593-3598, 2008. 

Jones LM, Fontanini A, Sadacca BF, Miller P, and Katz DB (2007). Natural 
stimuli evoke dynamic sequences of states in sensory cortical ensembles. Proc 
Natl Acad Sci U S A. 104(47):18772-18777. 

Kernighan BW, Ritchie DM (1988). The C programming Language, Prentice-Hall, 
Upper Saddle River, NJ. 

Liu JK, Buonomano DV (2009). Embedding multiple trajectories in simulated 
recurrent neural networks in a self-organizing manner. J Neurosci. 
29(42):13172-81. 

McKinstry JL, Seth AK, Edelman GM, Krichmar JL (2008). Embodied models of 
delayed neural responses: Spatiotemporal categorization and predictive motor 
control in brain-based devices.  Neural Networks 21:553-61. 

Myme CI, Sugino K, Turrigiano GG, Nelson SB (2003). The NMDA-to-AMPA 
ratio at synapses onto layer 2/3 pyramidal neurons is conserved across 
prefrontal and visual cortices. J Neurophysiol. 90(2):771-9. 

Nakajima T, Hosaka R, Mushiake H, Tanji J. (2009). Covert representation of 
second-next movement in the pre-supplementary motor area of monkeys. J 
Neurophysiol. 101(4):1883-9. 

Rhodes BJ, Bullock D, Verwey WB, Averbeck BB, Page MPA (2004). Learning 
and production of movement sequences: Behavioral, neurophysiological, and 
modeling perspectives. Human Movement Science 23:699–746. 

Rutishauser U and Douglas R (2009). State-dependent computation using 
coupled recurrent networks. Neural Computation, 21(2). 

Salinas E (2009). Rank-Order-Selective Neurons Form a Temporal Basis Set for 
the Generation of Motor Sequences. Journal of Neuroscience. 29(14):4369-
4380 

Seidemann E, Meilijson I, Abeles M, Bergman H, Vaadia E (1996). 
Simultaneously Recorded Single Units in the Frontal Cortex Go through 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
58 

Sequences of Discrete and Stable States in Monkeys Performing a Delayed
 Localization Task. Journal of Neuroscience 76(2):752-768. 

Tanji J (2001). Sequential organization of multiple movements: Involvement of 
Cortical Motor Areas. Annu. Rev. Neurosci. 24:631–51. 

Verduzco-Flores SO, Bodner M, Ermentrout B (2012). A model for complex 
sequence learning and reproduction in neural populations. J Comput 
Neurosci. 32(3):403-23. 

Zucker RS (1989). Short-term synaptic plasticity. Annu Rev Neurosci. 12:13-31. 
 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
59 

Figure 1. Sequence generation network architecture. (A) Center-
Annular-Surround (CAS) network architecture that produces WTA dynamics.  
The CAS network architecture consists of interconnected spiking neurons, 
excitatory (green ovals) and inhibitory (red ovals).  Each population is arranged 
in a two-dimensional grid. Connections from representative cells are illustrated. 
Axons from excitatory neurons (green arrows) project to neurons within green 
areas. Axons from inhibitory neurons (red arrows) project to neurons in the 
transparent red annular areas. The CAS connectivity leads to WTA dynamics, in 
which small regions of high activity are surrounded by large regions with little 
activity. (B) The sequence generation network is comprised of two reentrantly 
interconnected Center-Annular-Surround (CAS) spiking networks, Areas A and 
B. Arrows indicate directions of neural connectivity, while the circle and the 
donut shape indicate the inter-network connectivity (projection field) from single 
points in the projecting network. The input area projects non-topographically to 
Area A.  Area A projects topographically to Area B, as indicated by the small oval 
in Area B. In turn, Area B projects topographically and widely back to area A, but 
not to the same spot from which it received input, as indicated by the donut-
shaped ring in Area A.  Avoiding projections to the corresponding spot helped 
prevent the network from locking into a single activity pattern due to self-
amplification.  Rather it allowed the network to switch smoothly between 
patterns in a sequence.  
 
 
Figure 2.  Custom humanoid robot, or brain-based device, used for 
behavioral tests of the sequence generation network. The BBD has a 
grayscale camera which monitors the location of the bright object in its hand in 
order to learn “hand-eye” coordination of its left hand.  During experiments the 
left arm was moved repeatedly in a sequence of four different postures.  See 
Materials and Methods for a detailed description of the device. 
 
 
Figure 3.  A large-scale network of approximately 4,000 spiking 
neurons autonomously transitions between states reflecting a learned 
sequence. 
 
(A) Spike rastergram of all neurons in Networks A and B showing the population 
activity recorded over 700 ms. as the network spontaneously generated the 
learned sequence.  Each spike is shown as a colored dot and each neuron is 
assigned a color to indicate the pattern to which it responds maximally. Networks 
A and B transitioned spontaneously between stable-states corresponding to three 
learned input patterns in the sequence as indicated by the three colors blue, 
green, and red associated with patterns four, five, and six, respectively.  (The few 
magenta dots are associated with neurons responding best to another pattern, 
but which are also activated by pattern four (blue)). The four neural populations 
in the network are labeled on the right of the diagram. Inh. = Inhibitory, Exc. = 
Excitatory.  The labels T1 through T5 mark transition times referred to in the text. 
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(B) After training, the coupled networks spontaneously generate a sequence of 8 
patterns in the correct order, and that sequence can be interrupted or shifted by 
presenting an external stimulus. Each row of the figure indicates, by brightness, 
the match score over time for one of the eight patterns that make up the 
sequence. The match score for pattern number X for example indicates how 
closely the neural population activity pattern in the Area A excitatory neurons 
matched the activity in the same population recorded when pattern X was 
presented to the network for the first time during training.  White is a perfect 
match, while black indicates a complete mismatch.  The network was trained 
from t=0-32 seconds by stimulating the 8 patterns in order. The times of 
stimulus presentation are indicated by black bars under the figure. The internally 
generated sequence is interruptible. When presented with one pattern in the 
sequence, pattern 6, for one second at t=37s and t=45s, the network activity 
immediately reflected the stimulus, and when the stimulus was removed the 
network generated the sequence from pattern 6 onward. 
 
 
Figure 4. After training, the simulated neural system anticipates 
upcoming patterns in the sequence.  The average match strength of 
individual patterns in the sequence is plotted over time during the presentation 
of the prior pattern.  Data was obtained during the second presentation of the 
sequence from t=9s to t=16s (blue solid line), and during the fourth presentation 
of the sequence from t=25s to t=32s (red dashed line). During the fourth 
presentation, 250 msec after each new pattern was presented, the activity of 
neurons in Area A began to match that of the next pattern in the sequence. Error 
bars show the standard error of the mean match response. 
 
 
Figure 5.  The four arm postures of the BBD as viewed through its 
video camera.  The BBD was trained to move its hand consecutively in 
numerical order to the 4 spots outlined in red. The images show the all four arm 
postures of the BBD. During training, a bright object placed in the hand made the 
hand positions salient against the dark background (The lighting was increased 
when these images were taken to provide sufficient contrast to see the arm).  
During a test for spontaneous recall of the learned sequence, the bright object 
was removed to eliminate visual input. 
 
 
Figure 6. The BBD self generates a learned sequence of arm motions 
using the sequence generation network model.  The BBD was trained to 
move its arm through four different postures such that its hand traced out a 
quadrilateral in space.  The figure shows the superposition of hand positions 
recorded during 20 seconds of training (green line) and during 20 seconds of 
self-generated movements after training (red line) for all 5 subjects. Lines are 
drawn between temporally adjacent data points recorded at 50 ms intervals. One 
of the five subjects showed some error and consistently “cut” the upper corner, 
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generating a different shape than the other four subjects. The self generated arm 
trajectories approximate the training trajectories. 
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Supplementary Material.  
 
Neuron parameters 
 
Table I shows each of the neuron model parameters used in all experiments.  
 
 
Table I. Neuronal parameters. a.u.: arbitrary units.  
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d (pA
) 

Exc. A 80 3 -60 -50 50 0.01 5 -60 10 
Inh. A 20 1 -55 -40 25 0.15 8 -55 200 
Exc. Motor 100 0.7 -60 -50 0 0.03 -2 -60 100 
Inh. Motor 20 1 -55 -40 25 0.15 8 -55 200 
Exc. B 80 3 -60 -50 50 0.01 5 -60 10 
Inh. B 20 1 -55 -40 25 0.15 8 -55 200 
Thalamic Input 200 1.6 -60 -50 40 0.01 15 -60 10 
 
 
Anatomy.  
 
The connectivity between model neurons fell into two classes: either local-type or 
surround-type. For local-type connectivity, a two-dimensional Gaussian 
probability distribution, centered on each post-synaptic cell, determined the 
probability of forming a synapse between each potential pre-synaptic neuron 
within a specified maximum distance, rmax   
 

 

f (d) = ae
−

(d − µ )2

2σ 2      (8) 
 

where a is a scale factor set to generate, on average, a target number of synapses 
on each post-synaptic cell, d is the distance between the pre-synaptic neuron and 
the post-synaptic neuron, µ is 0, and σ is the standard deviation.  In a similar 
manner, a two-dimensional Gaussian function was also used to specify the 
synaptic strength between connected neurons as a function of the distance 
between them in the network.  The total of all synaptic efficacies was scaled to 
sum to a constant parameter with units in nanoSiemens (nS). Both connection 
probability and strength were maximal between nearest neighbors, and fell off as 
a function of distance, controlled by the same parameter, the standard deviation 
of a Gaussian.  
 
For surround-type connectivity, a post-synaptic neuron receives synaptic 
connections from neurons located in a surrounding annular region specified by a 
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minimum (rmin) and maximum (rmax) radial distance from the post-synaptic cell.  
(This is equivalent to saying that each pre-synaptic neuron sends projections to 
post-synaptic neurons in an annular  region). The probability of forming a 
connection with a neuron in the annulus is determined as a function of distance 
from the post-synaptic cell. The function used is a Gaussian with standard 
deviation σ, centered at µ=(rmin+rmax)/2. Thus a post-synaptic neuron does not 
connect with a neuron within the central ring, has minimal connection 
probability at the inner ring of the annulus, maximal probability half-way 
between the inner and outer ring of the annulus, and no connections beyond the 
outer ring.  This probability density function is scaled to create a prespecified 
number of synapses for each post-synaptic neuron.  The synaptic strengths for 
the surround-type connection are also initialized using the same function, with 
the same parameters.  However, the sum of all synaptic strengths of this type was 
scaled to make the total equal to a constant value under experimenter control. 
 
In order to avoid boundary conditions in the network, the network was treated as 
a torus.  Thus connections from neurons that would go outside of the network 
instead “wrap around” to connect with neurons on the opposite edge. 
 
Table II shows the parameters defining the anatomy and synaptic parameters of 
the sequence generation network for the network with simulated sequence 
inputs. The table defines two types of information for every neural area: the 
neuron composition, and the synaptic connectivity for each neuron type. The first 
four columns of the table list, for each separate neural population in the 
simulation, the type of neuron, the area in which they are located, the number of 
neurons in the population, and the total number of synapses per neuron.  
 
The remaining columns define the connectivity for each type of neuron in the 
area.  Multiple rows are necessary to define the connectivity for each post-
synaptic type; one row is needed for each presynaptic neuron type forming 
synapses on the post-synaptic neurons. Pre-area and pre-type specify the 
presynaptic area and type of a neuronal group projecting to the post-synaptic 
group. The next column specifies the percentage of the post-synaptic cell’s 
synapses allocated to this pathway.  The remaining columns provide all of the 
parameters used to specify details of the synaptic pathways as described in the 
paragraphs above. 
 
Table III show the parameters defining the anatomy and synaptic parameters of 
the motor sequence network used to control the arm of the BBD; the format is the 
same as Table II. 
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Supplementary Figure 1. The neural architecture for the BBD experiments.  
 
Neural architecture for the BBD experiment.  
 
Supplementary Figure 1 illustrates the neural architecture used for the BBD 
experiments. The sequence network consists of two CAS networks, Area A and B, 
each consisting of populations of excitatory (E) and inhibitory (I) neurons 
synaptically coupled as described in the paper. Visual input from the video 
camera provided patterned input to “thalamic” (T) neurons of Area A, while the 
output of excitatory neurons in the motor area (M) were used to control the two 
shoulder joints of the left arm.  After repeatedly stimulating the motor area in one 
of four different locations in the same order, and thus moving the arm to one of 
four different postures, a mapping formed from the visual area responses to the 
location of the hand to the motor area output that drove the hand to those 
locations.  The sequence of four visual patterns was learned by the sequence 
network, Areas A and B.  As this network recalled the visual sequence after 
training, associated area M activity caused the arm to move to the posture 
associated with the next visual pattern in the sequence, as shown in Figure 6. 
 
Mapping motor network activity to arm postures. 
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In order to translate from neuronal firings to joint angle in the left shoulder of the 
BBD, the output of the motor network cells was pooled using a form of 
population vector averaging described next.  
 
Each excitatory neuron of the motor network, Area M, was assigned a preferred 
set of angles for each of the two shoulder joints.  Nearby neurons in this 
predetermined map evoked similar joint angles, but different patterns of activity 
among these cells could evoke all possible positions of the left arm. Neuron i at 
grid position u,v in the network prefers shoulder angles 

 

(wi
1,wi

2) = (u /40,v /40). 
 
For each joint, j, the preferred joint angles of all cells, weighted by the 
corresponding firing rate, were added together to determine an equilibrium 
posture as follows: 
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, 

where

 

wi
j  is the angle for joint j preferred by cell i, and ri is the estimated firing 

rate of the cell estimated with a time constant of 100 ms. Joint angles were 
recalculated in this manner, and shoulder joints were adjusted every 250 
milliseconds. 
 
Visual input. 
 
Video was recorded with an Axis 207MW wifi camera. Grayscale images with a 
resolution of 320x240 were transmitted at 30fps. The pixels from the central 
portion of the video frames were used to mimic retinal photoreceptors.  These 
pixels provided input to a two-dimensional grid of on-center Retinal Ganglion 
Cells (RGC). The grid size was 21x21 neurons with a center area receptive field 
size of 3x3 and the surround area of 6x6 pixels. Each RGC receives a current that 
is computed following the algorithm of Wohrer and Kornprobst (2009). These 
currents were constantly injected at each integration step until the next video 
frame was received. RGCs were modeled with the Izhikevich model (Izhikevich 
and Edelman, 2008) with the following parameters: C=100, Vr=-70mV, Vt=-
50mV, k=1, a=0.005, b=0, c= -75mV, d=250, and Vpeak=10mV.  
 
Training stimulation patterns used in the initial sequence experiment. 
 
The first experiment uses eight artificial stimulation patterns to train the 
sequence network.  We assume that each population pattern corresponds to a 
unique network response to an external sensory input. Supplementary Figure 2 
plots the 8 individual population firing rate patterns resulting from current 
stimulation into a subset of the Area A excitatory neurons. Within each diagram, 
the color of each pixel indicates the firing rate of one neuron in the population, as 
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indicated by the color scale to the right of each diagram.  Each simulated neuron 
with a non-zero firing rate was stimulated with a current injection of 1,000 pA for 
one second.  These eight patterns were present one at a time and repeated in the 
network in the sequence shown in the figure from right to left, top to bottom. 
 

 
 
Supplementary Figure 2. The simulated population activity patterns used to 
train the sequence network.  See supplementary text for details.  
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Supplementary Figure 3. The four population activity patterns in the Input 
area used in the first training stage in the BBD experiment from t=1 to t=20 
simulation seconds (the network runs slower than real-time, and we measure 
time in network simulation cycles with a time step of 1ms). Plots are similar to 
supplementary figure 2. These four firing rate patterns reflect the visual patterns 
from the grayscale camera sensing the hand of APE-X in four different locations 
during 1 experiment. The color scale to the right of the four map indicates the 
mean firing rate associated with each color. 
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Supplementary Figure 4. The four population activity patterns in area A in 
response to the four stimulus patterns shown in Supplementary Figure 3 the first 
time they are presented, from t=1 to t=4s for one BBD subject. Color scale to the 
right indicates the mean firing rate associated with each color. 
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Supplementary Figure 5.  Similar to Supplementary Figure 4 but showing 
population responses during the fifth presentation of each pattern, from t=16 to 
t=19s. The increased firing rates are due to STDP acting on connections from the 
Input area to excitatory cells in Area A, and local connections between excitatory 
cells within Area A. 
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Table II. Anatomical and synaptic parameters for the sequence generation network used 
in experiments with simulated input. 
 

Post-synaptic 
neuron type

Post-synaptic area
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Pre-synaptic neuron 
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Percentage of total 
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σ
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e stotal (nS)
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Initial α

Final  α

Learning start  tim
e 

(m
s)

Learning end tim
e 

(m
s)

gain
NM

D
A

gain
NM

D
AVI

gain
G

ABAB

Exc. A 1600 3080 A Exc. 14 - 0.1 0.05 0 22 10 0 0 0 0 0.5 0 0.1
A Inh. 29 0.1 1 0.8 0 1200 20 0 0 0 0 0.5 0 0.1
B Exc. 29 0.36 1 0.3 0 60 30 0.9 0.9 0 32000 0 0.5 0.1
Input Thalamic 29 - 1.44 2.5 0 200 50 0.9 0.9 0 32000 0.5 0 0.1

Exc. B 1600 2200 B Exc. 40 - 0.15 0.07 0 30 5 0.9 0.9 0 32000 0.5 0 0.1
B Inh. 40 0.15 1 0.3333 0 900 10 0 0 0 0 0.5 0 0.1
A Exc. 20 - 0.15 0.07 0 22 5 0 0 0 0 0.5 0 0.1

Inh. A 400 2000 A Exc. 20 - 0.33 0.16 0 25 5 0 0 0 0 0.5 0 0.1
A Inh. 40 0.15 1 0.3333 0 180 3 0 0 0 0 0.5 0 0.1
Input Thalamic 40 - 1.44 10 0 15 10 0 0 0 0 0.5 0 0.1

Inh. B 400 2000 B Exc. 20 - 0.33 0.16 0 15 2 0 0 0 0 0.5 0 0.1
B Inh. 40 0.15 1 0.3333 0 180 3 0 0 0 0 0.5 0 0.1
A Exc. 40 - 0.15 100 0 15 50 0 0 0 0 0.5 0 0.1

Thalamic Input 484 0 - - 0 - 0 0 0 0 0 0 0 0 0 0.5 0 0.1
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Table III. Anatomical and synaptic parameters for the sequence generation network 
used in experiments with the BBD. 
 

Post-synaptic 
neuron type

Post-synaptic area
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Pre-synaptic 
neuron type
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Learning end tim
e 
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gain
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D
A

gain
NM

D
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G

ABAB

Exc. A 1600 3080 A Exc. 14 - 0.1 0.05 0 22 10 0 0 0 0 0.5 0 0.1
A Inh. 29 0.1 1 0.8 0 1200 20 0 0 0 0 0.5 0 0.1
B Exc. 29 0.36 1 0.3 0 60 30 0.9 0.9 40000 60000 0 0.5 0.1
Input Thalamic 29 - 1.44 2.5 0 200 50 0.9 0.9 0 20000 0.5 0 0.1

Exc. B 1600 2200 B Exc. 40 - 0.15 0.07 0 30 5 0.9 0.9 0 20000 0.5 0 0.1
B Inh. 40 0.15 1 0.3333 0 900 10 0 0 0 0 0.5 0 0.1
A Exc. 20 - 0.15 0.07 0 22 5 0 0 0 0 0.5 0 0.1

Inh. A 400 2000 A Exc. 20 - 0.33 0.16 0 25 5 0 0 0 0 0.5 0 0.1
A Inh. 40 0.15 1 0.3333 0 180 3 0 0 0 0 0.5 0 0.1
Input Thalamic 40 - 1.44 10 0 15 10 0 0 0 0 0.5 0 0.1

Inh. B 400 2000 B Exc. 20 - 0.33 0.16 0 15 2 0 0 0 0 0.5 0 0.1
B Inh. 40 0.15 1 0.3333 0 180 3 0 0 0 0 0.5 0 0.1
A Exc. 40 - 0.15 100 0 15 50 0 0 0 0 0.5 0 0.1

Thalamic Input 484 0 - - 0 - 0 0 0 0 0 0 0 0 0 0.5 0 0.1

Exc. Motor 1600 1800 A Exc. 33 - 0.33 0.16 0 5 5 0.9 0.1 20000 40000 0.5 0 0.1
A Inh. 45 0.33

33
1.44
4

10 0 1200 10
0

0 0 0 0 0.5 0 0.1

B Exc. 22 - 1.41
4

4.5 0.5 20 5 0.9 0.1 20000 40000 0.5 0 0.1

Inh. Motor 400 1000 A Exc. 60 - 0.33 0.16 0 10 2 0 0 0 0 0.5 0 0.1
A Inh. 40 0.33
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1.44
4

10 0 800 20 0 0 0 0 0.5 0 0.1
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A spiking neural network 
simulation of working memory 

 
Jason G. Fleischer1,2, Joseph A. Gally1, and Gerald M. Edelman1 

 

Abstract 
 
Working memory (WM) is associated with persistent neural activity in prefrontal and 
parietal cortices and is often assessed in animals through delayed match-to-sample 
(DMS) tasks. In this paper we simulate a large-scale spiking neural network that can 
elicit persistent WM-related activity and carry out visual DMS tasks. We examine the 
ability of the network to remember stimuli accurately over a period of seconds through 
persistent activity. The network uses three known and distinct biological mechanisms 
that support persistent activity: dense reentrant excitatory connections, NMDA receptor 
activation, and short term synaptic plasticity. We assess the effects of manipulating 
these persistent activity mechanisms on the model’s WM functionality. We describe a 
neural mechanism for detecting a match between persistent activity and activity evoked 
by the current stimulus, and we apply this mechanism to DMS tasks. We investigate 
how the network’s capacity for storing multiple stimuli scales with the number of 
neurons, and discuss the implications of these results in relation to our network and 
others in the literature.  

 

Introduction 
 
Retaining a fleeting perception for seconds or minutes after a stimulus disappears is 
critical for many forms of behavior, cognition, and learning. Working memory (WM) 
allows for the cognitive manipulation of stored information about stimuli, and such 
memories can be used in decision making (Baddeley, 2012). While there is evidence for 
some separation between the neural substrates of WM and decision making (Bechara 
et al., 1998), it has been suggested that both WM and decision making involve active 
maintenance of information by prefrontal cortex (Miller and Cohen, 2001). Such active 
maintenance of information is associated with persistent neural activity (Fuster and 
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Alexander, 1971; Curtis and Lee, 2010). An interesting feature of WM is its ability to 
simultaneously hold a limited number of different stimuli (Cowan, 2001).  
 
In both human and animal studies, WM has often been investigated using a delayed 
match-to-sample (DMS) paradigm.  Typically an animal is shown a brief stimulus to be 
remembered for a few seconds or minutes.  After a delay period, during which no 
stimulus is presented, the animal is shown a second stimulus that might or might not be 
identical to the first.  A correct response, indicating whether the two stimuli match, 
results in the delivery of reward.  
 
In primates persistent firing discharges in prefrontal cortex correlate with the 
remembered stimuli during visual DMS tasks (Fuster and Alexander, 1971). Lesions in 
this area are known to disrupt WM performance (Passingham, 1975; Mishkin and 
Pribram, 1956), and the observation of persistent activity in prefrontal cortex suggests a 
plausible mechanism by which such memories can be maintained in the absence of the 
stimulus.  Moreover, persistent discharge related to a stimulus during the delay period is 
not restricted to prefrontal cortex, but has also been observed in parietal cortex and 
sensory areas (Miyashita and Chang, 1988; Ferrera et al., 1994; Bisley et al., 2004; 
Romo and Salinas, 2003). One significant difference between memory responses in 
different areas is that prefrontal and parietal cells maintain stimulus-selective activity in 
the presence of distractors, while higher order sensory areas such as inferotemporal 
cortex (Miller et al., 1996) and S2 (Romo and Salinas, 2003) do not. 
  
This paper presents a large-scale spiking neural model with persistent activity that 
enables multi-item working memory.  The network incorporates three distinct biological 
mechanisms for generating persistent activity. All three mechanisms operate 
simultaneously in real cortical circuits, and each mechanism has been shown to be 
independently capable of supporting persistent activity. These mechanisms are (1) 
dense reentrant connectivity producing attractor dynamics (Amit and Brunel, 1997), (2) 
short-term synaptic plasticity enabling robustness against brief drops of firing rate 
(Mongillo et al., 2008), and (3) NMDA receptors maintaining excitation over durations 
longer than input inter-spike intervals (Wang, 1999). Persistent activity in the network is 
characterized in relation to parameters controlling these mechanisms.  DMS tasks also 
require a neural mechanism for detecting a match between persistent activity and 
activity evoked by the current stimulus. We propose a matching mechanism based upon 
a segregation of visual and memory-related inputs onto AMPA and NMDA receptors of 
postsynaptic neurons, and we examine the ability of the network to perform visual DMS 
tasks.  Finally, we characterize the capacity of the network to store multiple items 
simultaneously as a function of network size. An alternative architecture is proposed for 
which WM capacity does not scale with respect to network size, a result consistent with 
data showing that animal species with very different brains sizes may have similar 
visual WM capacity.  
 
Material and Methods 
 
Full details of the neural simulations can be found in the Supplementary Material. 
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Network. Neurons are grouped into areas that are distributed over a two-dimensional 
grid with toroidal topology.  Neural areas have similar local circuitry and dynamics. 
Within each area, the cells are interconnected in an arrangement that we call a Center-
Annular-Surround (CAS) architecture, which we have found to effectively generate 
winner-take-all or attractor dynamics in large-scale networks of spiking neurons (Chen 
et al., 2013). Such dynamics result from the CAS circuitry (see Figure 1A): neurons 
receive connections from nearby excitatory cells, whereas connections from inhibitory 
cells come from more distant neighbors in the surrounding annular region. When 
stimulated, the CAS circuitry gives rise to sparse firing organized into a few localized 
patches of neural activity. Patches form when some active neurons “win” by 
suppressing firing in their neighbors via the annular inhibition. The location of these 
patches is determined by the combination of random initial conditions and experience-
dependent synaptic plasticity. CAS networks are similar in some ways to attractor 
neural networks arranged in two dimensions, e.g. (York and van Rossum, 2009).  
However, the network presented here has more biologically detailed synaptic and 
neural dynamics. 
 
The network has four neural areas as shown in Figure 1B: visual input area (VIA), visual 
features area (VFA), working memory area (WMA), and match detection area (MA).   
VIA neurons are organized retinotopically, have firing rates proportional to pixel 
luminance in an on-center off-surround fashion similar to visual inputs arising from the 
retina (Wohrer and Kornprobst, 2009) and send random, non-retinotopic projections to 
VFA. VFA responses are selective to features of the visual stimulus, such as occurs 
throughout the visual system (Albright et al., 1984; Desimone et al., 1984). VFA sends 
topographic connections to both WMA and MA. WMA has persistent activity related to 
those visual features, such as is observed in parietal and prefrontal cortex (Fuster and 
Alexander, 1971; Miyashita and Chang, 1988), and sends topographic connections to 
MA. Afferents to MA from VFA arrive on AMPA receptors, while those from WMA arrive 
on NMDA receptors. These projections are balanced such that MA neurons respond 
only when a match occurs between a currently perceived stimulus and persistent 
activity in WMA. The responses of MA reflecting decision making in match-to-sample 
tasks can be observed in a wide range of cortical and subcortical areas (Curtis and Lee, 
2010). Details of the connectivity within and between areas can be found in the 
Supplementary Material. In vertebrate brains, networks that correspond to these 
simulated areas may be distributed among a wide range of cortical and non-cortical 
areas, and network topology may be in the form of functional connectivity rather than 
the spatial location of cell bodies. 
 
Neural model. We use a spiking neuron model (Izhikevich, 2007) that enables efficient 
computation for large-scale networks while accurately simulating single neuron 
membrane voltage and spike dynamics. Neural areas consist of 80% excitatory and 
20% inhibitory neurons, and each cell type has parameters tuned to match its biological 
couterpart.  
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Neurons have conductance-based inputs from simulated AMPA, NMDA, GABAa, and 
GABAb receptors. Presynaptic spikes release a quantity of neurotransmitter onto 
postsynaptic receptors in proportion to the strength of the particular synapse. Excitatory 
(inhibitory) neurotransmitters affect AMPA and NMDA (GABAa and GABAb) receptors 
differentially, as determined by gains for each receptor type at that synapse. In the 
absence of presynaptic spikes, receptor activation dies away with a fixed time constant 
for each receptor type.  NMDA current is gated by the voltage level inside the neuron. 
Synaptic strengths are modified by a short term plasticity rule.   
 
Simulation experiments. We performed simulations using three different sets of visual 
inputs (Figure 2). Each set tested different aspects of network function:   
1) Digits: 320x240 pixel JPEG images of the digits 0 through 9. This data set had the 

largest number of exemplars and tested discrimination among many visual stimuli.  
There were many sections of overlap in bright pixels between digits, c.f. the top of 
digits 2 and 3, and the right side of 3 and 8. 

2) Natural images: Five 320x240 pixel JPEG images of natural scenes selected at 
random from Google Images and normalized for equal average luminosity. These 
images have much more complex spatial patterns of luminosity than the other data 
sets and therefore tested discrimination among complex stimuli. 

3) J/mirror-J: 240x320 pixel video from an Axis 207MW wireless camera pointed at a set 
of wood blocks arranged in either a J shape or its mirror image, presented at different 
orientations. This data set has the most overlap in terms of pixels between 
categories: all images share half of their bright pixels with two other images, and a 
quarter of their pixels with three more images.  In addition, the noise inherent in video 
capture added variability to induced spike trains. 

 
During a simulation, connectivity among neurons was generated by randomly drawing 
from two-dimensional probability distributions.  The random number generator was 
seeded with different values in each simulation, causing similar overall patterns of 
connectivity but different wiring in detail. 
 
Synapses projecting to and within VFA are modified by a spike timing dependent 
plasticity learning rule (Song et al., 2000) during a training period at the beginning of 
each simulation. During this period all images in a data set were presented sequentially 
for 1 second each, and the sequence was repeated until 100 seconds had elapsed.  
During training a slow hyperpolarizing current in each VFA neuron helped ensure that 
the patches of neural activity generated by each stimulus were topographically well-
separated from those of other stimuli.  
 
After VFA training, the network was tested on a DMS task using the same image set 
presented during training. During a DMS trial, an image from the data set was 
presented for one second.  After a one second delay period when no stimulus was 
presented, a second stimulus from the set was selected and presented for one second.  
A two second response period followed, during which no visual stimulus was presented. 
Any spikes in MA during this period indicate a “matching” response for that trial; 
otherwise a “non-matching” response was recorded.  This process was iterated over 
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every permutation of images in the first and second presentation periods that are 
possible in the data set. Errors were recorded as either false positives (the two stimuli 
did not match, but a matching response was recorded) or false negatives (the two 
stimuli matched, but a non-matching response was recorded). 
 
Analyses. We tested the persistence of patterns in WMA by locating the centroids of 
neural activity patches generated by stimuli. A correctly persisting WMA activity pattern 
had at least one activity patch whose centroid did not shift during the delay period by 
more than three times the distance between neighboring neurons. This criterion was 
empirically determined as the maximum shift that caused no overlap between any pair 
of stimulus patterns.  
 
To measure WM capacity we simulated a set of 18 unique VFA neural activity patterns 
and tested whether those patterns were correctly stored as persistent activity in WMA. 
The 18 patterns, each consisting of two activity patches, were the maximum number of 
patterns that could exist in WMA without any overlap.  Patterns were presented in 
random order to the network for one second each.  After all patterns were presented, 
and an additional two second delay period had elapsed, we checked if WMA had 
correctly stored the patterns presented in VFA.  A VFA pattern was correctly stored if 
we found a persistent activity patch in WMA whose location corresponded with that 
pattern (i.e., had not shifted as described above).  

Results 

Persistent activity generates working memory 
When a trained network was presented with a visual stimulus, a pattern of neural 
activity was generated in VFA and WMA that reflected the identity of the stimulus 
(Figure 3A).  After the stimulus was removed, the pattern of activity persisted in WMA 
but disappeared from VFA (Figure 3B). 
 
Figure 4 shows that persistent activity in WMA remained unchanged during the 
presentation of a second stimulus, while activity in VFA changed to reflect the new 
stimulus. After presentation of a stimulus to be remembered, WMA holds the relevant 
pattern of activity for the rest of the trial, both during and after the presentation of a 
second stimulus.  The firing rate of the persistent WMA activity slows briefly at the initial 
presentation of the second stimulus, but it returns to a higher firing rate even before 
stimulus offset. These results are consistent with observations of the difference between 
stimulus selective activity in prefrontal cortex and inferotemporal cortex (Miller et al., 
1996). Although WMA eventually displays some persistent activity related to the second 
stimulus, this activity is lower in firing rate, involves fewer neurons, and appears after a 
longer latency than the activity from the first stimulus. 
 
We examined the contribution of each of the three distinct mechanisms sustaining WMA 
activity: strong reentrant connectivity, NMDA receptor activation, and short term 
plasticity. To do so, we systematically varied the three simulation parameters controlling 
the strength of each mechanism, and tested how parameter changes affected persistent 
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activity.  The parameters examined for excitatory neurons in WMA were long-term 
synaptic strength s, magnitude of short-term plasticity per-spike p, and the proportion of 
NMDA to AMPA receptors, nmda_gain / ampa_gain, while maintaining a constant 
amount of synaptic efficacy, nmda_gain + ampa_gain (see Supplementary Material for 
details on how these parameters affect network dynamics). Each parameter was varied 
independently over 11 values resulting in 1331 simulations.  During a simulation, an 
activity patch was stimulated at a random location in VFA for one second, and we 
recorded whether that patch persisted at the same location (using the centroid test 
described in Methods) after three additional seconds. Ten different patches were 
stimulated in each simulation. 
 
Figure 5 shows the percentage of patterns that persisted from these simulations. On the 
“low synaptic strength” side of the parameter space (low long-term synaptic strength, 
low ratio of NMDA receptors to AMPA receptors, highly depressing short term 
plasticity), persistent activity does not initiate at all or slowly dissipates before the 3 
second delay period is over.  On the “high synaptic strength” side of the parameter 
space (high long term synaptic strength, high ratio of NMDA receptors to AMPA 
receptors, highly facilitating short term plasticity), the initial pattern of activity dissipates 
into various forms of traveling waves or epileptic, synchronous whole-network activity.  
 
Supplementary Video 1 demonstrates the qualitatively different ways in which persistent 
activity fails, and Supplementary Figure 1 shows where in the parameter space the 
different types of failures occur. 
 
Testing working memory in a visual delayed match-to-sample task 
We tested the WM functionality of the network through a DMS task.  In addition to WM, 
DMS tasks require the ability to distinguish stimuli from one another, to compare two 
stimuli, and to signal whether or not the stimuli match.  
 
We investigated whether VFA activity was sufficient to distinguish among visual stimuli 
in the digits and natural image datasets. After a network was trained for a particular 
dataset, the patterns of VFA activity were unique for each stimulus in that dataset. 
These patterns were reliable: successive presentations of the same input rarely (3% out 
of 1500 total trials: 10 repetitions for each unique stimulus, 15 unique stimuli, repeated 
for 10 random seeds of network initial conditions) resulted in a VFA activity pattern that 
had shifted far enough to be confused with one generated by a different stimulus (see 
Methods for details). Therefore we conclude that VFA activity is sufficient to reliably 
distinguish stimuli from one another. 
 
We constructed a network (MA) capable of signaling matches between currently 
perceived stimuli and persistent activity held in WMA while ignoring distractor stimuli. 
The segregation of MA afferents onto different receptors is the basis for this network’s 
ability to detect matches (see Discussion for relevant experimental support). Inputs from 
WMA arrive on NMDA receptors, while input from the VFA arrives on AMPA receptors.  
The first stimulus of a DMS task generates persistent activity in WMA, which 
accumulates large NMDA receptor activation on target neurons in MA during the delay 
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period.  Because of the NMDA voltage gate this WMA input alone will not generate any 
firing in MA. Likewise, the visual input alone is insufficiently powerful to fire MA neurons. 
However, once AMPA receptor input depolarizes a match detection cell with activated 
NMDA receptors, that cell will begin to fire.  In this way, MA will be activated when a 
VFA activity patch location overlaps that of a persistent activity patch in WMA. Any 
activity in MA is taken to indicate a match between the first and second stimuli in a trial 
(see Methods). Error rates for all three datasets were low when this network was 
applied to DMS tasks, as shown in Table 1.  
 
Figure 6 shows examples of spike rasters during a typical DMS trial in which stimuli 
match. It also shows mean firing rate traces accumulated over all matching trials of the 
digits dataset. The figure shows that around 100 milliseconds after stimulus onset, VFA 
responded with a unique pattern of activity for each stimulus in the training set.  By 500 
milliseconds, WMA activity mirrored VFA activity.  This WMA activity pattern persisted in 
the absence of the stimulus during the delay period and for the rest of the trial.  MA 
activity began around 900 - 1200 milliseconds after the presentation of the second 
matching stimulus and persisted during the rest of the trial.   

Capacity of the working memory network 
A characteristic feature of working memory is its ability to store multiple items at the 
same time (Cowan, 2001). The mean number of items that can be stored 
simultaneously in WM is often referred to as WM capacity. It is clear from Figure 4B that 
our network is capable of simultaneously storing multiple patterns of persistent activity. 
Here we present simulations detailing how network properties relate to WM capacity. 
 
We investigated how WM capacity (see Methods) was affected by the parameters of 
long-term synaptic strength, short-term plasticity, and the ratio of NMDA/AMPA 
receptors. The results of these simulations can be seen in Figure 7. Parameter choices 
that enabled the persistence of a high percentage of single patterns (see Figure 5) also 
had better capacity for multiple patterns (see Figure 7).  In both Figure 5 and Figure 7, 
the parameter choices that enable persistent activity while also allowing long-term 
synaptic weight to vary widely are synaptic depression and NMDA/AMPA receptor ratios 
close to one.   
  
We also examined the scaling of working memory capacity with the number of neurons 
in the working memory area. WMA networks with different numbers of neurons were 
tested; to ensure that firing dynamics remained constant, each had the same ratio of 
excitatory to inhibitory neurons and connectivity probability distribution functions. 
Simulations showed that capacity had a roughly log-linear relationship with the number 
of neurons in WMA, as shown by the black line in Figure 8. When the WMA network 
had sufficient numbers of neurons, mean capacity reached the size of the data set.  
 
A scaling of capacity with neuron number would seem to be at odds with data showing 
that visual WM capacity is similar in species with very different brain sizes (Gibson et 
al., 2011; Buschman et al., 2011; Cowan, 2001). We were curious if a network could be 
constructed where capacity did not increase with the number of neurons. One solution 
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we found is shown in Figure 9: WMA was split into k subpopulations of m neurons each, 
where km equals the number of neurons in the single-population WMA network 
discussed so far in this paper. Each subpopulation was organized topographically, and 
neurons that shared the same position in different subpopulations would receive similar 
inputs. In this alternate model there was strong tightly-topographic mutual inhibition 
between subpopulations, but within a subpopulation the connectivity remained the same 
as in the previous model.  Details of the multiple subpopulations can be found in the 
Supplementary Material. 
 
The colored lines in Figure 8 show that in this alternate model WM capacity is not 
determined by network size. As the number of neurons in the whole network increases, 
capacity asymptotically approaches an upper limit. The number of neurons in a 
subpopulation, not the network, determines the limit. The limit arises as a result of 
inhibition between subpopulations:  when an activity pattern persists in one 
subpopulation, inhibition suppresses activity in that neighborhood in the other k-1 
subpopulations.  Thus the k populations of m neurons respond more similarly to a single 
population of m neurons than to a single population of km neurons.  
 
Although the subpopulation architecture is only one of many possible solutions for 
preventing linear scaling of capacity with network size, it is potentially illuminating to see 
what such connectivity would look like, were it to be observed in animals. This 
hypothetical account predicts that species with more neurons that function in working 
memory would have more subpopulations of neurons, yet those subpopulations would 
be of similar size across species.  It would also predict more inhibitory connections 
overall in those species with more subpopulations.  
 

Discussion 
 
We are interested in testing hypotheses about the mechanisms behind the phenomena 
of working memory. Because real nervous systems are composed of large, degenerate 
(Edelman and Gally, 2001) networks operating via selectional principles (Edelman, 
1987), we have built a large-scale neural network to investigate potential mechanisms 
of working memory. 
 
This paper describes a spiking neural network that exhibits stimulus selective persistent 
activity after the stimulus is removed. In our neural model, stimulus selective persistent 
activity is the sine qua non of working memory. Although it is possible to conceive of 
mechanisms for maintaining a working memory trace without persistent activity during 
the delay period (Sugase-Miyamoto et al., 2008), such a mechanism would not 
influence other neural circuits during the delay period.  Indeed, working memory is 
intimately tied to decision making (Baddeley, 2012), and it has been proposed that 
persistent activity is involved in decision making as well as the maintenance of the 
working memory trace (Curtis and Lee, 2010). Our network demonstrates a mechanism 
consistent with these observations, in which persistent activity both maintains the 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
87 

memory trace and prepares match-detection neurons to respond in a visual delay 
match-to-sample task.  
 
Spiking activity in simulated networks can become persistent through several 
mechanisms. Amit and Brunel (1997) demonstrated that strong connectivity in the local 
circuit can produce attractor dynamics. Mongillo et. al. (2008) showed that short term 
synaptic plasticity enables persistent activity to be robust against brief drops of firing 
rate. Wang (1999) demonstrated that NMDA receptors allow a neuron to maintain 
excitatory current over time periods longer than the inter-spike intervals of its inputs. 
The network presented here incorporates all three mechanisms, and persistent activity 
was produced over a broad range of parameter values for implementing these 
mechanisms.  
 
In real brains, synaptic strengths are highly variable, both among different circuits and in 
the same circuit over the course of time, and yet working memory must be maintained in 
spite of these variations. In our simulations, the combination of depressing short term 
plasticity and a near unitary ratio of NMDA to AMPA enables synaptic strength between 
excitatory neurons to vary over the largest possible range without affecting the 
persistence of neural activity. Interestingly, our current understanding of connections 
between pyramidal neurons in cortex includes depressing short term plasticity (Markram 
et al., 1998) and near unitary NMDA/AMPA ratio (Myme et al., 2003). Our results 
suggest that the known physiology of cortical short term plasticity and NMDA to AMPA 
receptor ratios might be critical for maintaining persistent activity despite the variability 
of synaptic strengths over time and between circuits. 
  
While the view of working memory as intimately tied to decision making and behavior is 
prevalent, very few spiking models of working memory address decision making.  One 
of these is the work of Compte et al. (2000), in which behavior was selected based upon 
an algorithmic read-out of persistent WM activity to perform an oculomotor delayed 
response task. Engel and Wang (2011) presented a variation of the same WM model 
that produced behavior in DMS tasks by integrating a neural mechanism based on 
competition between go and no-go circuits.  The present paper describes a simple and 
effective neural mechanism for detecting a match between current perceptions and 
remembered stimuli: segregation of sensory and WM related inputs onto, respectively, 
AMPA and NMDA receptors. This segregation is consistent with the experimental 
evidence for ‘silent’ synapses where post-synaptic sites have only NMDA receptors 
(Isaac, 2003), and with the observation of systematic variations in AMPA and NMDA 
receptor prevalence at various points along the dendritic tree (Monaghan and Cotman, 
1985; Nusser, 2000).  
 
The network presented in this paper is able to sustain multiple patterns of neural activity 
at the same time, allowing us to explore working memory capacity limits in simulation. 
Previous spiking neural network models of working memory (Mongillo et al., 2008; Edin 
et al., 2009; Dempere-Marco et al., 2012) have also maintained persistent activity for 
multiple simultaneous stimuli. Edin et al. (2009) addressed the issue of capacity 
analytically for their model and show that it arises from lateral inhibition: as the number 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
88 

of excitatory neurons involved in persistent activity increases, the amount of lateral 
inhibition also rises. Eventually elevated inhibition prevents persistent activity.  
 
In our single-population working memory network, capacity scaled with the number of 
neurons in the working memory network.  This is problematic in a model of working 
memory since animal species with very different number of neurons have very similar 
visual working memory capacities (Gibson et al., 2011; Buschman et al., 2011; Cowan, 
2001).  Although Edin et al. (2009) found that capacity for their network scaled with the 
fraction of neurons activated by a stimulus, under different assumptions their network 
would also display a similar scaling of capacity with network size. If one considers the 
number of neurons representing a stimulus to be fixed, while the number of neurons in 
the network increased, then the fraction of neurons representing a stimulus would 
effectively decrease and capacity would increase by their analysis. To our knowledge 
there is no experimental evidence establishing whether there is, across species, either a 
constant number or a constant proportion of neurons activated by a stimulus.  
 
It is our belief that such a scaling will arise in any network where capacity is determined 
solely through lateral inhibition arising from persistent activity. Models where different 
processes limit capacity would not be subject to this effect, e.g. (Lisman and Idiart, 
1995) as well as the multiple subpopulations network presented in this paper. 
Additionally, a different scaling of sensory coding capacity may arise if networks with 
lateral inhibition are employed in familiarity memory (Cortes et al., 2010). 
 
While advances in neurophysiology and neuroanatomy are critical to understanding 
neural mechanisms, it remains technically difficult to observe the simultaneous spiking 
activity of more than ~100 neurons in a behaving animal.  It is even more difficult to 
observe or infer the connectivity between neurons that are recorded. We therefore 
expect that further development of biologically-plausible, large-scale neural models 
such as this one will aid us in interpreting biological data and suggest new directions for 
investigating working memory. 
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Supplementary Material 
 
Parameters in the spiking neuron equations were selected to model cortical pyramidal 
cells, basket cells, and thalamocortical neurons (see Supplementary Table 1).  These 
simulated cells are arranged into one input (thalamcortical) area and three neural areas 
with similar CAS circuitry (Chen et al., 2013), consisting of 80% pyramidal and 20% 
basket cell types. Supplementary Table 2 describes the connections within and between 
neural areas.  
 
Neuronal Dynamics. Spiking dynamics of each neuron were simulated using a 
computationally efficient phenomenological model (Izhikevich, 2007). The model has 
only 2 equations and 9 parameters that could be explicitly found from neuronal resting 
potential, input resistance, rheobase current, and other measurable characteristics. We 
present the model in a dimensional form: membrane potential is in millivolts, the current 
is in picoamperes and the time step is in milliseconds: 
 

 

CÝ v = k(v − vr)(v − vt ) − u − Isyn  

 

Ý u = a b(v − vr) − u{ }  
 
where C is the membrane capacitance, v is the membrane potential, vr is the resting 
potential, vt is the instantaneous threshold potential, u is the recovery variable (the 
difference of all inward and outward voltage-gated currents), Isyn is the synaptic current 
defined below, a and b are dimensionless parameters. When the membrane potential 
reaches the peak of the spike, i.e., v > vpeak, the neuron is said to fire a spike, and all 
variables are reset according to v ← c and u ← u+d, where c and d are dimensionless 
parameters. 
 
Supplementary Table 1 lists the parameters used to model different cell types. Cortical 
excitatory and inhibitory types populated neural areas VFA, WMA, and MA.  
Thalamocortical input neurons made up area VIA. 
 
 
Short-Term Synaptic Plasticity. The strength of synapses varied as a function of the 
presynaptic neuron’s firing history. We assume that the synaptic conductance (strength) 
of each synapse scales down (depression) or up (facilitation) on a short time scale 
(hundreds of milliseconds) by a multiplicative factor x. This factor, different for each 
presynaptic cell, is modeled by the following one-dimensional equation 
 

 

Ý x = (1− x) /τx , x← px  when a presynaptic neuron fires. 
 
x tends to recover to the equilibrium value x = 1 with the time constant τx, and it is reset 
by each spike of the presynaptic cell to the new value px. Any value p < 1 decreases x 
and results in short-term synaptic depression, whereas p > 1 results in short-term 
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synaptic facilitation. This equation was introduced in (Izhikevich and Edelman, 2008), 
and can be seen as a simplification of more detailed models, e.g. (Markram et al., 
1998). In our model a given synapse can display either depression or facilitation but not 
both. 
 
The parameters τx =150 and p=0.8 were used on all excitatory and inhibitory 
connections within VFA and WMA.  Within MA there is no short-term plasticity on 
connections originating from excitatory neurons and τx =150 and p=0.8 on connections 
originating from inhibitory neurons. The connections from VIA to VFA had τx =150 and 
p=0.7. The connections from VFA to MA and from WMA to MA had τx =150 and p=0.8.   
 
Synaptic Kinetics. The total synaptic current to each neuron is simulated as 
 

 

Isyn = gAMPA + gNMDA
(v + 80) /60( )2

1+ (v + 80) /60( )2

 

 
  

 

 
  (v − 0) + gGABAA

(v + 70) + (gGABAB
+ gSH )(v + 90) 

 
where v is the postsynaptic membrane potential, and the subscript indicates the 
receptor type. Each conductance g has first-order linear kinetics g’= − g / τ with τ = 5 
ms, 150 ms, 6 ms, 150 ms, and 15,000 ms for each of the simulated AMPA, NMDA, 
GABAA,GABAB, and SH receptors, respectively.  The SH “receptors” were an ad hoc 
method for adding slow hyperpolarizing currents in order to bias cells that had already 
responded to one stimulus to remain off for a period of time, and thus improve pattern 
separation. This SH mechanism only operated in VFA for the first 100 seconds of a 
simulation when STDP organized neural responses to stimuli.  In all other neurons, and 
in VFA neurons for 

 

t >100 seconds, 

 

gSH = 0.    
 
Each firing of a presynaptic excitatory neuron increases gAMPA by ampa_gain x s on the 
postsynaptic cell, where s is the long-term synaptic weight in nanoSiemens and x is the 
short-term depression/potentiation scaling factor as above; gNMDA increases by 
nmda_gain x s, where nmda_gain / ampa_gain is the ratio of NMDA to AMPA receptors. 
The same computation is performed for inhibitory conductances, gGABAA, gGABAB, and 
gSH, with their respective gains.  The gain factor for gSH was set to to 0.3 for the first 100 
simulation seconds and was set to zero for the remainder of the simulation. 
 
Long Term Plasticity.  Synaptic strengths of synapses between VIA and VFA 
excitatory neurons were modified using a spike timing dependent plasticity rule (Bi and 
Poo, 1998) for the first 100 seconds of each simulation. During this time the network 
was being sequentially shown each stimulus in the dataset, and each synaptic strength 
s was updated: 
 

 

Ý c = −c /τc + αSTDP(t)δ(t − tpre / post )   

 

Ý s = c  
 
where 

 

δ(t) is the Dirac delta function that step-increases the variable c. Firings of pre- 
and postsynaptic neurons, occurring at times 

 

tpre,tpost , respectively, change c by the 
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amount 

 

αSTDP(t)  where 

 

α is the learning rate for the synapse,

 

t = tpost − t pre is the 
interspike interval, and  

 

STDP(t) =
A+ exp(−1/τ +)t ,t > 0

A− exp(−1/τ −) t ,t ≤ 0

 
 
 

 
 
 
.   (7) 

where A+ = 0.005, A− = 0.001, τ+ = τ− = 20 ms. The variable c decays to zero 
exponentially with the time constant 

 

τc =1 s, and s is updated once every 50 ms for 
computational efficiency. 
 
Synaptic scaling. Synaptic scaling is a biologically-observed mechanism (Turrigiano et 
al., 1998), which allows a neuron to maintain the same amount of total synaptic input 
while redistributing input strength among synapses during plasticity. Synaptic scaling 
was performed for each neuron to maintain the total of all synaptic strengths arriving on 
a given neuron, syntotal, at a constant value. This scaling was performed for every 
neuron every 50 ms during the simulation. Each synapse was prevented from 
exceeding synmax or going below zero, regardless of learning rules and normalization. 
 
Network connections. The local excitation and longer range inhibition structure 
described below is characteristic of the CAS architecture (Chen et al., 2013).  
Anatomical (Goldman-Rakic, 1995; Kisvárday et al., 2000; Holmgren et al., 2003; Fino 
and Yuste, 2011) as well as functional evidence (Kaschube et al., 2010; Haider et al., 
2010; Derdikman et al., 2003) exists for such an architecture in the cortex. However, 
some evidence points to inhibition acting in a strictly local fashion, e.g. (Hirsch and 
Gilbert, 1991), and models have addressed the effect of changing the reach of inhibition 
on neural dynamics and stimulus coding (Compte et al., 2003; Cortes et al., 2012). 
Unpublished experiments indicate that surround inhibition is necessary for our network 
to generate stable patches of activity that support WM.  
 
The connectivity between model neurons fell into two classes: either local-type or 
surround-type. For local-type connectivity, a two-dimensional Gaussian probability 
distribution, centered on each postsynaptic cell, determines the probability of forming a 
synapse between each potential presynaptic neuron within a specified maximum 
distance, rmax   
 

 
 
where a is a scale factor set to generate, on average, a target number of synapses on 
each postsynaptic cell, d is the distance between the presynaptic neuron and the 
postsynaptic neuron,  is 0, and ⌠ is the standard deviation.  In a similar manner, a two-
dimensional Gaussian function was used to specify the synaptic strength between 
connected neurons as a function of the distance between them in the network.  The 
total of all synaptic efficacies was scaled in order to sum to a constant parameter with 
units in nanoSiemens. Thus both connection probability and strength were maximal 
between nearest neighbors, and fell off as a function of distance, controlled by the same 
parameter, the standard deviation of a Gaussian.  
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For surround-type connectivity, a postsynaptic neuron receives synaptic connections 
from neurons located in a surrounding annular region specified by a minimum (rmin) and 
maximum (rmax) radial distance from the postsynaptic cell. The probability of forming a 
connection with a neuron in the annulus is determined as a function of distance from the 
postsynaptic cell. The function used is a Gaussian with standard deviation ⌠, centered 
at =(rmin+rmax)/2. This probability distribution function is scaled to create a target 
number of synapses for each postsynaptic neuron.  The synaptic strengths for the 
surround-type connection are initialized using the same function. The sum of all 
synaptic strengths was scaled to make the sum equal to a constant value under 
experimenter control, syntotal. 
 
In order to avoid boundary conditions in the network, the network was treated as a 
torus.  Thus connections from neurons that would otherwise go outside of the network 
instead “wrap around” to connect with neurons on the opposite edge. Euclidean 
distance between neurons (on the torus) determined axonal conduction delays. Inside a 
neural area, the maximum conduction delay occurred between neurons that were the 
maximum possible distance apart, 

 

dmax .  The delay on a given synapse between two 
neurons in the same area distance d apart was 

 

5 d /dmax  milliseconds. Between neural 
areas, the delay was

 

5 d /dmax  + delayave , where d was calculated as if the postsynaptic 
neuron’s location was in the presynaptic neural area. The value 

 

delayave was 5ms from 
VIA to VFA, 10ms from VFA to WM, 15ms from VFA to MA, and 20ms from WM to MA. 
 
Supplementary Table 2 lists the parameters defining the anatomy and synaptic 
parameters of the network as used in the DMS tasks.  The connectivity definition for a 
postsynaptic neuron type spans multiple rows, one row for each possible presynaptic 
neuron type. The first four columns of the table list the type of neuron, the area in which 
it is located, the number of neurons in the population, and the total number of synapses 
per neuron.  The next columns specify presynaptic areas and cell types, along with the 
percentage of the postsynaptic cell’s synapses allocated to this pathway.  The minimum 
radius (rmin), maximum radius (rmax), and sigma columns (⌠) specify the connectivity 
parameters in units of Euclidean distance, such that 1 indicates the distance between 
two neighboring neurons in the presynaptic neural group. Percentage noise indicates 
how much random uniform variability there is in the initial synaptic weights. syntotal is the 
value used in the synaptic scaling operation for the maximal total conductance per 
postsynaptic neuron. synmax is the maximum value of any single synapse.  The gain 
columns indicate how synaptic strength is distributed to post-synaptic receptors as 
described previously.  
 
Similar networks with different sized WMA (500 – 42,000 neurons) were used in some 
simulations. In those cases VFA and MA remained the same size, and topographic 
projections between neural areas were made based on relative position within the 
area’s 2D grid of neurons. Local connectivity within neural areas remained the same. 
 
Alternative WMA architecture. Some simulations used a form of the working memory 
network that was divided up into k subpopulations of m neurons each, such that km 
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equals the number of neurons in WMA.  Each subpopulation had the same ratio of the 
number of excitatory neurons to inhibitory neurons as the previously described single-
population WMA network.  Each subpopulation had local connections within the 
subpopulation as previously described for the connections inside the single-population 
WMA network.  Inputs from VFA remain as previously described as well, but go to all k 
subpopulations.  Each subpopulation i, inhibits all other subpopulations j ≠ i with tightly 
topographic projection from WMAi inhibitory to WMAj excitatory neurons using the 
parameters rmin = 0, rmax = 2.1, ⌠ = 1.4, percent noise=0, syntotal =150, synmax = 5, 
GABAa gain=1, and GABAb gain=0.  Each of these k-1 inhibitory projections adds on 
average 14 synapses per WMA excitatory neuron. 
 
Visual input. Video was recorded with an Axis 207MW wifi camera using 320x240 
pixel, 8 bit greyscale images at 30fps. The central portion of the video frames were used 
to drive the 21x21 retinotopic grid of input neurons in the VIA.  Each VIA neuron 
received current injection proportional to the grayscale intensity of pixels in its local 
receptive field, and the centers of adjacent neurons’ receptive fields mapped onto 
adjacent image pixels.  The current injection function of each neuron was based on a 
model of on-center/off-surround retinal ganglion cells (Wohrer and Kornprobst, 2009), 
with a 3x3 on-center area and a 6x6 off-surround area. These currents were constantly 
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injected at each numerical integration step until the next video frame was received. 

 
Figure 1: Architecture of the neural model.  (A) Local network connectivity.  Each neural 
area consists of excitatory neurons (green dots) and inhibitory neurons (red dots) 
arranged on a 2D grid.  For each kind of connection a representative presynaptic 
neuron is shown surrounded by an overlay indicating the postsynaptic neurons to which 
it may connect. The color of the overlay indicates the kind of presynaptic neuron. The 
actual connections made between neurons are dictated by random draws from 
probability density functions.  (B) Inter-area connectivity. The visual input area (VIA) 
simulates retinotopic spiking activity with firing rates proportional to the local brightness 
of the image in an on-center off-surround fashion.  The visual features area (VFA) 
receives random (non-retinotopic) connections from VIA, and sends a topographic 
projection to a working memory area (WMA). WMA and VFA both send topographic 
projections to the match detection area (MA), but to different receptor types (AMPA or 
NMDA).  
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Figure 2.  The digits, natural images, and J/mirror-J stimuli sets that were used in the 
simulations. 
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Figure 3. Examples of neural activity in response to stimuli.  Each neural activity plot 
shows, at a particular time, pixels arranged to represent the firing rate of neurons on a 
2D grid. Pixels with brighter luminance indicate neurons with higher firing rate. (A) 
Neural activity after one second of stimulus presentation.  Visual input neurons (VIA) 
respond in an on-center off-surround way to visual inputs. In visual features (VFA) and 
working memory (WMA) areas, each stimulus generates a unique pattern of activity. 
Stimulus patterns consist of two patches or attractors formed by the CAS architecture of 
the network.  (B) As before a stimulus in VIA generates a unique pattern of activity in 
VFA and WMA. After stimulus offset the pattern persists in WMA, whereas VIA and VFA 
become silent. 
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Figure 4. Examples of rasters and mean-firing rate traces of persistent working memory 
activity in the presence of a second, distracting stimulus.  (A) Spike rasters of neurons 
that, after training on the digits data set, responded selectively to the first stimulus 
presented in the trial (top rastergram and 3rd from top) and second stimulus presented 
in the trial (2nd from top and 4th from top). For each rastergram we randomly selected 
six neurons that responded to the first time the stimulus was presented in a sequence of 
trials. This raster shows those same neurons on a subsequent trial, where the first 
stimulus is presented from 0-1 seconds, and the second stimulus from 2-3 seconds. 
WMA neurons responding to the first stimulus have persistent activity even when the 
second stimulus is presented. WMA neurons responding to the second stimulus do not 
respond as strongly, and those weaker responses occur later after stimulus onset.    (B) 
Mean firing rate traces over all neurons responding to the digits data set.  For each 
possible non-matching stimulus pair, the activity of all neurons that respond to the 
relevant stimulus were averaged together.  Firing rates (in Hz) are calculated over a 200 
ms window centered on the given time slice. 
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Figure 5. The reliability of persistent activity is affected by network parameters. The 
parameters varied were long-term synaptic strength, s, of local reentry between 
excitatory neurons, the ratio of simulated NMDA to AMPA receptors on excitatory 
neurons nmda_gain/ampa_gain , and short term plasticity (STP) parameter p for 
connections originating from excitatory neurons. When p<1 presynaptic spikes produce 
synaptic depression, when p=1 there is no STP, and when p>1 presynaptic spikes 
produce synaptic facilitation.   Each 2D slice shows the variation of synaptic strength (x-
axis) vs NMDA/AMPA ratio (y-axis) for a single value p (z-axis).  The colors of graph 
squares indicate the percentage of WM patterns that were still firing correctly 3 seconds 
after the stimuli initiating them were gone.   Synaptic strength is able to vary over the 
widest range without affecting persistent activity when excitatory-excitatory synapses 
are depressing and have physiologically observed values of NMDA/AMPA ratio. 
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Figure 6. Time course of neural activity during matching DMS trials with the digits data 
set.  (A) Spike rasters of randomly selected neurons responsive to the stimulus “4” from 
a correct match trial. In each neural region we randomly selected six neurons that 
responded to the very first presentation of the stimulus during training. This raster 
shows those same neurons on a subsequent trial where the same stimulus is presented 
in  both the first (0-1 seconds) and second (2-3 seconds) presentation periods. WMA 
neurons responding to this stimulus are active during the delay period (1-2 seconds) 
and throughout the matching period (3-5 seconds).  MA neurons begin to respond only 
towards the end of the second stimulus presentation.  (B) Mean firing rate  over all 
neurons responding to match trials in the digits data set.  For each of the 10 match trials 
(0-0, 1-1, etc.), the responses of all neurons that respond to the given stimulus were 
averaged together.  Firing rates are calculated over a 200 ms window centered on the 
given time slice with zero padding before and after the duration of the trial. 
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Figure 7. WM capacity is affected by network parameters. The parameters varied were 
baseline synaptic strength of local reentry between excitatory neurons, the 
NMDA/AMPA receptor ratio on excitatory neurons, and short term plasticity (STP) 
parameter p for connections originating from excitatory neurons. When p<1 presynaptic 
spikes produce synaptic depression, when p=1 there is no STP, and when p>1 
presynaptic spikes produce synaptic facilitation.   Each 2D slice shows the variation of 
synaptic strength (x-axis) vs NMDA/AMPA ratio (y-axis) for a single value p (z-axis).  
The colors of graph squares indicate the percentage of WM patterns that persisted after 
being presented sequentially with 18 patterns for one second each, followed by a two 
second period of no stimulus.   Blank squares represent parameter combinations that 
were not run because there were no successful single patterns stored for that 
parameter combination in the simulations of Figure 5. For each parameter combination, 
10 networks were created from different random seeds, and each network was 
presented with the 18 patterns 10 times in a different random order each time. 
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Figure 8. The relationship between WM capacity, number of neurons in WMA, and the 
size of subpopulations. The capacity of simultaneous WM storage increases with the 
number of neurons in WMA when all neurons are in a single population.  The single 
population WMA reaches perfect capacity (all 18 stimuli) with sufficient network size. 
However, if the same number of neurons are arranged into multiple subpopulations that 
mutually inhibit each other in a topographic fashion, then capacity rises to some 
asymptotic limit, where the limit is proportional to the number of neurons in a 
subpopulation.  X-axis values reflect the total number of neurons (excitatory and 
inhibitory) in WMA. Y-axis values reflect mean capacity over 100 trials (10 seeds, 10 
random permutations of order each seed) with 95% confidence interval error bars. 
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Figure 9.  Alternate architecture where WMA is broken into k subpopulations, each of 
which has m neurons. Each subpopulation inhibits all others with tightly topographic 
projections. WMA neurons receive inputs from VFA as dictated by topographic location, 
regardless of subpopulation. Inside each subpopulation local connectivity is the same 
as previously described for the entire single population WMA network. 
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Table 1. Matching and error rates for the three visual data sets in a DMS task. For each 
result, the table records the percentage (raw number out of maximum possible in 
parentheses) of each outcome possibility: correct match or non-match between trial 
stimuli, false positive match, or false negative non-match.  Each data set was run for 10 
different neural networks, with each network initialized by a different seed for the 
random number generator.  
 
 
 
 
 



 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
104 

 
Supplementary Figure 1. Neural activity dynamics when WM related activity fails to 
persist.  After an activity patch was stimulated for one second, the network was given no 
stimulation for a further five seconds. In the fifth second the dynamics of neural activity 
were evaluated by the experimenter.  Activity either (1) did not persist, (2) successfully 
persisted and remained at the topographic location where it was stimulated, (3) 
persisted and traveled across the network topology, (4) traveled and split into multiple 
patches that continued to travel, (5) split into multiple traveling patches that recursively 
split again until the entire network was filled with epileptic activity, (6) split into multiple 
traveling patches that became stable unmoving patches in a grid-like arrangement, or 
(7) split into multiple traveling patches that became stable in location but displayed 
epileptic activity.   All of these behaviors are illustrated in Supplementary Video 1. 
 
 
 

 
Supplementary Table 1. Parameter values for neural dynamics. 
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Supplementary Table 2. Anatomical and synaptic parameters used in DMS simulations.  
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
APE-X Name given to a humanoid BBD constructed at The Neurosciences Institute 
BBD Brain-based device 
CAS Center-annular-surround (type of network connectivity) 
COTS Commercial off-the-shelf 
DMS Delayed match-to-sample 
STDP Spike-timing-dependent (synaptic) plasticity 
UAV Unmanned aerial vehicle 
UAGV Unmanned aerial-ground vehicle 
UGV Unmanned ground vehicle 
WM Working memory 
WTA Winner-take-all (type of network and population behavior) 
 
 
 
 
 
 
 


	MATERIALS AND METHODS
	DISCUSSION
	Abstract
	Introduction
	Results
	Persistent activity generates working memory
	Capacity of the working memory network

	Discussion
	Acknowledgements
	Supplementary Material
	Bibliography



